Emphasizing Discriminative Features for Dataset Distillation in Complex
Scenarios

Supplementary Material

We organize our supplementary material as follows:

Algorithm of EDF:
* Appendix 9: Pseudo code of EDF with detailed explana-
tion.

Experimental Settings:

* Appendix 10.1: Training recipe.

* Appendix 10.2: Evaluation recipe.

* Appendix 10.3: Computing resources required for differ-
ent settings.

Additional Experimental Results and Findings:

* Appendix 11.1: Cross-architecture evaluation.

* Appendix 11.2: Results of distilled datasets without
knowledge-distillation-based evaluation.

* Appendix 11.3: Distorted synthetic images under exces-
sive enhancement factors.

* Appendix 11.4: The changing trend of discriminative areas
in EDF distillation.

* Appendix 11.5: The impact of using different models to
extract activation maps.

Comp-DD Benchmark

* Appendix 12.1: Subset details of the Comp-DD bench-
mark.

» Appendix 12.3: Hyper-parameters of the Comp-DD bench-
mark.

* Appendix 12.2: More clarifications on the complexity
metrics.

Visualization
* Appendix 13: Visualization of EDF distilled images.

Related Work
* Appendix 14: More related work of dataset distillation.

9. Algorithm of EDF

Algorithm 1 provides a pseudo-code of EDF. Lines 1-7
specify inputs of the EDF, including a trajectory-matching
algorithm A, the model for Grad-CAM @, the frequency
of activation map update K, the supervision dropout ratio
«, the enhancement factor (3, the activation map processing
function F, and the number of distillation iterations 7.

Lines 12-14 describe the Common Pattern Dropout mod-
ule. After we obtain the trajectory matching losses from A,
we sort them in ascending order to get ordered losses. Then,
the smallest «|L| elements are dropped as they introduce
non-discriminative common patterns.

Lines 15-19 describe the Discriminative Area Enhance-
ment module. For every K iterations, we update activation

Algorithm 1 Emphasizing Discriminative Features
Input: D,..,;: The real dataset

Input: D,,,,: The synthetic dataset

Input: A: A trajectory-matching based algorithm
Input: G: Grad-CAM model

Input: K: Activation maps update frequency
Input: o: Threshold of supervision dropout
Input: 7T': Total distillation steps

Input: 5: Enhancement factor

Input: F: Activation map processing function
Input: r: Learning rate of synthetic dataset

I: fortin0...7 — 1do

20 L < A(Dsyn; Drear) > Compute
the array of trajectory matching losses

3 L'+ Sort(L) > Sort L to
get ordered losses

4t Legr < Zlila\ o L > Dropout
low-loss supervision

5. if{ mod K = 0 then

6: M < G(Dsyn) > Update

activation maps of current .S

7. endif

8:  (VDsyn)EDF < VDgy, o F(M, ) > Process
synthetic image gradients

9: Dsyn — Dsyn —-T- (VDsyn)EDF > Biased

update towards discriminative areas
10: end for
11: Return Dy,

maps of synthetic images. The gradients of synthetic images
are then processed by the function F (see Equation 4 for the
computation). Finally, synthetic images are updated biasedly
towards discriminative areas.

10. Experimental Settings
10.1. Training Details

We follow previous trajectory matching works [8, 13, 25]
to train expert trajectories for one hundred epochs. Hyper-
parameters are directly adopted without modification. For
distillation, we implement EDF based on DATM [13] and
PAD [25], which simultaneously distills soft labels along
with images.

We use torch-cam [11] for Grad-CAM implementation.
Hyper-parameters are listed in Table 9.



10.2. Evaluation Details

To achieve a fair comparison, when comparing EDF with
DD methods, we only adopt the set of differentiable aug-
mentations commonly used in previous studies [1, 68, 69] to
train a surrogate model on distilled data and labels.

When comparing EDF with DD+KD methods, we fol-
low their evaluation methods, which we detail the steps as
follows:

1. Train a teacher model on the real dataset and freeze it
afterward.

2. Train a student model on the distilled dataset by minimiz-
ing the KL-Divergence loss between the output of the
student model and the output of the teacher model on the
same batch from distilled data.

3. Validate the student model on the test set and obtain test
accuracy.

For implementation, please refer to the official repo of

SRe2L and RDED.

10.3. Computing Resources

Experiments on IPC 1/10 can be run with 4x Nvidia-A100
80GB GPUs, and experiments on IPC 50 can be run with
8x Nvidia-A100 80GB GPUs. The GPU memory demand is
primarily dictated by the volume of synthetic data per batch
and the total training iterations the augmentation model un-
dergoes with that data. When IPC becomes large, GPU
usage can be optimized by either adopting techniques like
TESLA [6] or by scaling down the number of training itera-
tions (’syn_steps”) or shrinking the synthetic data batch size
(batch_syn”).

11. Additional experiment results and findings

11.1. Cross-architecture Evaluation

Generalizability on different model architectures is one key
property of a well-distilled dataset. To show that EDF can
generalize well on different models, we evaluate synthetic
images under IPC 10 and 50 of the ImageSquawk subset, on
three other standard models, AlexNet [20], VGG11 [45], and
ResNet18 [14]. As shown in Table 14, our distilled datasets
outperform random selection and two baseline methods on
both IPC10 and IPC50. Compared with IPC10, distilled im-
ages under IPC50 can achieve better performance on unseen
neural networks. This suggests that EDF’s distillation results
have decent generalizability across different architectures,
especially when the compressing ratio is smaller which al-
lows distilled datasets to accommodate more discriminative
information.

https://github.com/VILA-Lab/SRe2L/tree/main/
SRe2L
https://github.com/LINs-1lab/RDED

11.2. Eval. without Knowledge Distillation

Starting from [54], representative dataset distillation (DD)
methods [1, 51, 69, 71] establish a general workflow as
follows: 1) Distillation: At this stage, information from the
real dataset is fully accessible to the DD algorithm to train
synthetic data. 2) Evaluation: After the distilled dataset is
obtained, the evaluation is performed by training a randomly
initialized model on the distilled data. Specifically, in the
context of classification, the objective is to minimize cross-
entropy loss. Recently, some new methods [48, 64, 73, 74]
introduced teacher knowledge into the student model by
applying knowledge distillation. Although it helps improve
performances to a large extent, it may not be able to reflect
the effectiveness of dataset distillation accurately.

To this end, we remove the knowledge distillation from
Eval. w/ Knowledge Distillation (SRe2L. and RDED) meth-
ods but keep soft labels to ensure a fair comparison, Specifi-
cally, we train a classification model on the synthetic images
by only minimizing the cross-entropy loss between student
output and soft labels. As shown in Table 11, without knowl-
edge distillation, EDF outperforms SRe2L. and RDED in
8 out of 9 settings. Our advantage is more pronounced,
especially when IPC is smaller, underscoring the superior
efficacy of EDF on smaller compressing ratios.

11.3. Distorted Images of Large Enhancement Fac-
tor

In Figure 6, we show results of using excessively large en-
hancement factors as mentioned in Section 4.3. The distri-
butions of these distilled images are distorted, with many
pixels containing only blurred information. This occurs be-
cause excessively increasing the gradients in discriminative
areas can lead to large updates between iterations, resulting
in the divergence of the pixel distribution. Therefore, the
enhancement of discrimination areas is not the stronger the
better. It is important to maintain the enhancement factor
within a reasonable range.

Figure 6. Distorted image distributions due to excessively large
enhancement factors (= 10)



Modules CPD DAE ™

Hyper-parameters « B K T batch_syn Ir_pixel syn_steps

1 0 1 50 1000 10000 40

ImageNette 10 0.25 1 100 10000 250 1000 40

50 0.375 1 200 100 100 80

1 0 1 50 1000 10000 40

ImageWoof 10 0.25 1 100 10000 250 1000 40

50 0.375 2 200 100 100 80

1 0 1 50 1000 10000 40

ImageMeow 10 0.25 1 100 10000 250 1000 40

50 0.375 2 200 200 100 40

1 0 1 50 1000 10000 40

ImageYellow 10 0.25 1 100 10000 250 1000 40

50 0.375 1 200 200 100 40

1 0 1 50 1000 10000 40

ImageFruit 10 0.25 1 100 10000 250 1000 40

50 0.375 1 200 200 100 40

1 0 1 50 1000 10000 40

ImageSquawk 10 0.25 1 100 10000 250 1000 40

50 0.375 2 200 100 100 80

Table 9. Hyper-parameters of experiments on ImageNet nette, woof, meow, fruit, yellow, squawk subsets.

Method ConvNetD5 ResNet18 VGGI11 AlexNet
Random 41.8 40.9 43.2 35.7
FTD 62.8 49.8 50.5 47.6
DATM 65.1 524 51.2 49.6
EDF 68.2 50.8 53.2 48.2

(a) ImageYellow, IPC10

Method ConvNetD5 ResNet18 VGGI11 AlexNet

Random 29.6 314 30.8 25.7
FTD 58.4 55.6 57.6 52.3

DATM 61.8 62.8 65.6 63.5
EDF 65.4 63.6 64.8 69.2

(b) ImageSquawk, IPC50

Table 10. Cross-architecture evaluation on ResNet18, VGG11, and AlexNet. ConvNetD5 is the distillation architecture. Distilled datasets
under IPC10 and IPC50 outperform random selection, FTD, and DATM, showing good generalizability.

11.4. Changing Trends of Discriminative Areas

Figure 5b demonstrates that EDF effectively expands the
discriminative areas (high-activation regions) on several im-
age samples at a fixed distillation iteration. In Figure 7a,
we show the changing trend of discriminative areas of 5
different classes across 10000 iterations (sampled every 500
iterations). Despite the fluctuation, these areas expand as
the distillation proceeds. This further confirms that one key
factor in the success of EDF is that it successfully increases
discriminative features in synthetic images and turns them
into more informative data samples.

11.5. Impact of different Grad-CAM Models

In our experiments, we use ResNel8 as the Grad-CAM
model to extract activation maps. However, the choice of
Grad-CAM model does not have a significant impact on
the performance, as long as it has been trained on the tar-
get dataset. As shown in Table 12, differences between
performances of different Grad-CAM models are within
0.5, demonstrating that our discriminative area enhancement
module doesn’t depend on the choice of Grad-CAM model.

11.6. Latency of Grad-CAM

We use torchcam [1 1] implementation of various Grad-CAM
methods to extract activation maps. In Table 13, we show the
latencies of extracting activation maps of various IPCs. No-
tably, these latencies are all below one second, demonstrating
a high inference speed. In our experiments, the maximum
number of extractions for one distillation is 200 (on IPC1).
Thus, the total time used for activation map extraction is at
most two minutes, which is neglectable compared with the
latency of the full distillation (several hours). In conclusion,
our use of Grad-CAM activation maps to provide guidance
doesn’t reduce the efficiency of the backbone.

12. Comp-DD Benchmark
12.1. Subset Details

The corresponding class labels for each subset are listed as

follows:

* Bird-Hard: n01537544, n01592084,
n01558993, n01534433, n01843065,
n01560419, n01601694, n01532829

n01824575,
n01530575,



Dataset ImageNette ImageWoof ImageSquawk
IPC 1 10 50 1 10 50 1 10 50
Random 12.6+1.5 44.8+1.3 60.4+1.4 11.4+1.3 20.2£1.2 28.2+0.9 13.2+1.1 29.6+1.5 52.8+0.4
DM 28.2+1.5 58.1£1.1 65.8+1.1 19.6+1.4 30.4+1.3 36.3+1.4 19.7+1.3 30.0£1.0 61.5+1.2
MTT 47.7+0.9 63.0+1.3 69.2+1.0 28.6+0.8 35.8+1.8 42.3+0.9 39.4+1.5 52.3£1.0 65.4+1.2
SRe2L 18.4+0.8 41.0+0.3 55.6+0.2 16.0+0.2 32.2+0.3 35.840.2 22.5+0.5 35.6+0.4 42.2+0.3
RDED 28.0£0.5 53.6+0.8 72.8+0.3 19.0+0.3 32.6%0.5 52.6+0.6 33.840.5 52.2+0.5 71.6+0.8
EDF 52.6+0.5 71.0+0.8 77.8+0.5 30.8+1.0 41.8+0.2 48.4+0.5 41.8+0.5 65.4+0.8 74.8+1.2

Table 11. Performances of SRe2L. and RDED without using knowledge distillation during evaluation. EDF outperforms the other two
methods in most of settings, and our advantage is more pronounced as IPC gets smaller.

Grad-CAM Model

fpC ‘ ConvNetD5 ResNet18 ResNet50 VGGI11
1 52.3 52.6 52.5 52.5
10 71.2 71.0 70.8 70.7
50 77.4 77.8 77.6 77.6

Table 12. Results of using different Grad-CAM models on Ima-
geNette. The choice of model only has minor influence on the
performance.

IPC ‘ 1 10 50 200 300
Latency (s) ‘ 0.63 0.52 0.74 0.68 0.94

Table 13. Latency of extracting Grad-CAM activation maps using
ResNet18. For each IPC in our experiments, the latency is less than
one second.

¢ Bird-Easy: n02007558, n02027492, n01798484,
n02033041, n02012849, n02025239, n01818515,
n01820546, n02051845, n01608432

¢ Dog-Hard: n02107683, n02107574, n02109525,
n02096585, n02085620, n02113712, 02086910,
n02093647, n02086079, n02102040

* Dog-Easy: n02096294, n02093428, n02105412,
n02089973, n02109047, n02109961, n02105056,
n02092002, n02114367, n02110627

e Car-Hard: n04252077, n03776460, n04335435,
n03670208, n03594945, 03445924, 103444034,
n04467665, n03977966, n02704792

¢ Car-Easy: n03459775, n03208938, n03930630,
n04285008, n03100240, n02814533, 03770679,
n04065272, n03777568, n04037443

¢ Snake-Hard: n01693334, n01687978, n01685808,
n01682714, n01688243, n01737021, n01751748,
n01739381, n01728920, n01728572

* Snake-Easy: 101749939, n01735189, n01729977,
n01734418, n01742172, n01744401, n01756291,
n01755581, n01729322, n01740131

e Insect-Hard: n02165456, n02281787, n02280649,
n02172182, n02281406, n02165105, n02264363,

n02268853, n01770081, n02277742
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Figure 7. (a) The trend of discriminative area change across various
distillation iterations. (b) Distribution of the activation map of a
random image from ImageNet-1K.

e Insect-Easy: n02279972, n02233338, n02219486,
n02206856, n02174001, n02190166, n02167151,
n02231487, n02168699, n02236044

e Fish-Hard: n01440764, n02536864, n02514041,
n02641379, 01494475, n02643566, n01484850,
n02640242, n01698640, n01873310

e Fish-Easy: n01496331, n01443537, n01498041,



n02655020, n02526121, n01491361,
n02607072, n02071294, n02066245

¢ Round-Hard: n04409515, n04254680, n03982430,
n04548280, n02799071, n03445777, 103942813,
n03134739, n04039381, n09229709

¢ Round-Easy: n02782093, n03379051, n07753275,
n04328186, n02794156, n09835506, n02802426,
n04540053, n04019541, n04118538

e Music-Hard: n02787622, n03495258, n02787622,
n03452741, 02676566, n04141076, n02992211,
n02672831, n03272010, n03372029

* Music-Easy: 103250847, n03854065, n03017168,
n03394916, n03721384, n03110669, n04487394,
n03838899, n04536866, n04515003

n02606052,

12.2. Complexity Metrics

We use the percentage of pixels whose Grad-CAM activation
values exceed a predefined fixed threshold to evaluate the
complexity of an image. In our settings, the fixed thresh-
old is 0.5. The reasons for fixing the threshold at 0.5 are
twofold. Firstly, when selecting subsets, images are static
and won’t be updated in any form (this is different from
EDF’s DAE module, which updates synthetic images). Thus,
using a fixed threshold is sufficient for determining the high-
activation areas.

Secondly, values of a Grad-CAM activation map range
from 0O to 1, with higher values corresponding to higher
activation. We present the distribution of the activation map
of a random image from ImageNet-1K in Figure 13b, where
the majority of pixels have activation values between 0.25
and 0.75. Subsequently, if the threshold is too small or
too large, the complexity scores of all classes will be close
(standard deviation is small), as shown in Figure 12 and 13.
This results in no clear distinguishment between easy and
hard subsets. Finally, we set 0.5 as the threshold, which is
the middle point of the range. Complexity distribution under
this threshold is shown in Figure 10.

Our complexity metrics are an early effort to define how
complex an image is in the context of dataset distillation.
We acknowledge potential biases or disadvantages and en-
courage future studies to continue the refinement of complex
metrics.

12.3. Benchmark Hyper-parameters

For the trajectory training, experiment settings are the same
as those used for ImageNet-1K and its subsets. For distilla-
tion, we provide hyper-parameters of EDF on the Complex
DD Benchmark in Table 14. These hyper-parameters can
serve as a reference for future works to extend to other sub-
sets of the benchmark.

100 std: 4.3%

Complexity (%)

Classes

Figure 8. Complexity distribution of all classes from ImageNet-1K
under threshold being 0.1. An excessively small threshold will
cause the complexity of all classes to become low and difficult to
distinguish.

100 std: 0.9%

Complexity (%)

Classes

Figure 9. Complexity distribution of all classes from ImageNet-1K
under threshold being 0.9. An excessively large threshold will
cause the complexity of all classes to become high and difficult to
distinguish.

100 std: 6.3%

Complexity (%)

Classes

Figure 10. Complexity distribution of all classes from ImageNet-
1K under threshold being 0.5. A moderate threshold makes the
complexity differences between classes more distinct.

13. Visualization of Distilled Images on
ImageNet-1K

In Figure 11 to 13, we present a visualization of distilled
images of all ImageNet-1K subsets in Table 1.

14. More Related Work

In Table 15, we present a comprehensive summary of pre-
vious dataset distillation methods, categorized by different
approaches. There are four main categories of dataset distil-
lation: gradient matching, trajectory matching, distribution
matching, and generative model-based methods. Recently,
some works [48, 64, 65] add knowledge distillation during



Modules CPD DAE ™
Hyper-parameters « B K T batch_syn Ir_pixel syn_steps
1 0 1 50 1000 10000
CDD-Bird-Easy 10 0.25 1 100 10000 400 1000 40
50 0.375 2 200 200 100
1 0 1 50 1000 10000
CDD-Bird-Hard 10 0.25 1 100 10000 400 1000 40
50 0.375 2 200 200 100
1 0 1 50 1000 10000
CDD-Dog-Easy 10 0.25 1 100 10000 400 1000 40
50 0.375 2 200 200 100
1 0 1 50 1000 10000
CDD-Dog-Hard 10 0.25 1 100 10000 400 1000 40
50 0.375 2 200 200 100
1 0 1 50 1000 10000
CDD-Car-Easy 10 0.25 1 100 10000 400 1000 40
50 0.375 2 200 200 100
1 0 1 50 1000 10000
CDD-Car-Hard 10 0.25 1 100 10000 400 1000 40
50 0.375 2 200 200 100

Table 14. Hyper-parameters of EDF on the Complex DD Benchmark.

the evaluation stage of dataset distillation [4, 5, 7, 10, 17, 29,
33-36, 40, 50, 55-58, 60, 62, 63, 66].
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(b) ImageSquawk

Figure 13

Category

Method

Kernel-based

KIP-FC [38]
KIP-ConvNet [39]
FRePo [78]
RFAD [31]
RCIG [32]

Gradient-matching

DC[71]
DSA [69]
DCC [22]

LCMat [44]

Trajectory-matching

MTT [1]
Tesla [6]
FTD [8]
SeqMatch [9]
DATM [13]
ATT [27]
NSD [61]
PAD [25]
SelMatch [24]

Distribution-matching

DM [68]
CAFE [51]
IDM [72]
DREAM [30]
M3D [67]
NCFD [53]

Generative model

DiM [52]

GLaD [2]
H-GLaD [77]
LD3M [37]
IT-GAN [70]
D4M [46]
Minimax Diffusion [12]

+ Knowledge distillation for evaluation

SRe2L [64]
RDED [48]
HeLIO [65]

Others

MIM4DD [43]
DQAS [75]
LDD [76]

Table 15. Summary of previous works on dataset distillation



