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Supplementary Material

This supplementary material elaborates on the proposed
HOI-TG regarding methodology details and experimental
results. Such information includes grid sampling and posi-
tional encoding, the construction of graph adjacency weight
matrix for objects, and expanding loss functions. The re-
sults cover the comparison with StackFLOW [17], the vari-
ants of removing the annotated segmentation masks and a
replacement by DetectronV2 [41] masks, and the location
of graph residual blocks. Then, we comprehensively com-
pare the computational efficiency and discuss the limita-
tions of our HOI-TG. To further validate the effectiveness
of our method, we present more qualitative comparisons in
the end. Along with this material, we also provide the code
for reproducibility.

6. More details of our HOI-TG

6.1. Grid sampling and positional encoding

We introduce grid sampling and positional encoding to pro-
vide the encoder with more 3D informative input. First,
we project the human joints Minit

j , human mesh Minit
h and

object mesh Minit
o obtained in the init stage onto the 2D im-

age plane using the camera parameters predicted in the init
stage. Then, we apply bilinear interpolation on F to obtain
the feature corresponding to each vertex. Finally, we con-
catenate the interpolated feature and the 3D coordinates of
each vertex to produce our 3D queries.

6.2. Graph adjacency matrix for objects

For the adjacency matrix of objects with different templates,
assuming that the 3D coordinate point of an object template
is P ∈ Rn×3, we first calculate the distance d(pi, pj) be-
tween each two points,

d(pi, pj) = ∥pi − pj∥2 (5)

Then for each point, we select the K points with the closest
distance as its neighbors and calculate the un-normalized
adjacency matrix Ā

′
,

Ā
′
(i, j) =

{
d(pi, pj) if pj is one of the K neighbors of pi,
0 otherwise.

(6)
K represents the pre-set number of neighbors. We use the
distance as the weight for neighbor nodes and 0 for non-
neighbor nodes. Finally, Ā

′
is normalized to obtain the ad-

jacency matrix Ā.

6.3. Loss functions and implementation details.
Our loss function consists of three parts, which are Lhuman,
Lhbox focusing on human reconstruction, and Lobject focus-
ing on object reconstruction:

L = Lhuman + Lobject + Lhbox. (7)

The Lhbox represents the L1 loss of the predicted hand
bounding box and GT. We follow previous works [30, 31]
for the design.

Lhuman is defined as:

Lhuman = Lms-vertex
human + Lparam

human + Ljoint + Ledge. (8)

Human vertex multi-scale loss Lms-vertex
human : We upsam-

ple Mh ∈ R431×3 twice to get M∗
h ∈ R1723×3 and

M∗∗
h ∈ R6890×3. Lms-vertex

human represents the L1 loss between
the multi-scale human vertices(Mh, M∗

h and M∗∗
h ) and GT

vertices.
Human parameters loss Lparam

human: Lparam
human represents the L1

loss between the predicted parameters (human body mesh
θbody and human hand mesh θhand) in the init stage and GT
parameters.
Human joint loss Ljoint: Our model has three joint outputs
in total: i) the 3D joint predicted in the init stage, ii) the init
3D joint and init 2D joint obtained by the SMPLH model
through the human parameters predicted in the init stage,
iii) the 3D joint and 2D joint coordinates we reconstruct
with the transformer. We all utilize L1 loss to minimize the
loss between them and the corresponding GT.
Human edge length consistency loss Ledge: Ledge is the
L1 loss between up-sampled predicted human mesh M∗∗

h

edges and GT edges.
Lobject is defined as:

Lobject = Lvertex
object + Lparam

object . (9)

Object vertices loss Lvertex
object: Lvertex

object is the L1 loss between
the reconstruction object vertices Mo and GT.
Object parameters loss Lparam

object : Lparam
object is the L1 loss be-

tween the init object parameters (Rinit and Tinit) and GT.
Implementation details. We train our HOI-TG frame-
work using the Adam optimizer with an initial learning
rate of 1×10−4 for both the transformer and the ResNet50
backbone. The pipeline is trained for 50 epochs, with
the learning rate decaying by 0.1 after 30 epochs. All
transformer weights are randomly initialized, except that
the ResNet backbone is initialized with weights from
Hand4Whole [30]. We set the mini-batch size to 16 on an
NVIDIA A100 80GB GPU.



Method CDhuman↓ CDobject↓ Contactp↑ Contactr↑
StackFLOW (w/o post-optim.) 5.98 12.6 0.429 0.521
StackFLOW (w post-optim.) 6.27 11.5 0.465 0.538
Ours 4.87 7.49 0.647 0.539

Table 5. Comparison with StackFLOW [17] on the BEHAVE [2] dataset. We use the officially released checkpoints by StackFLOW [17]
for the comparison.

7. More experimental results
7.1. Comparison with StackFLOW
Table 5 presents a comparison between our HOI-TG and
StackFLOW [17]. StackFLOW infers the posterior dis-
tribution of spatial relationships between people and ob-
jects from the input image and utilizes GT offsets to opti-
mize their positions and postures during the inference stage,
namely post-optimization. Although StackFLOW provides
experimental results on the BEHAVE dataset, it splits the
dataset differently from other approaches [31, 42, 44].
Specifically, StackFLOW samples more instances for test-
ing within the BEHAVE dataset’s test set. For a fair com-
parison, we report results on the intersection of its test
split and the generally used test set. Our method outper-
forms StackFLOW, regardless of whether it includes the
post-optimization stage. The results show the effectiveness
of our implicit contact modeling over the explicit human-
object offset constraint.

7.2. Segmentation
Following CONTHO [31], we use human and object seg-
mentations provided by the datasets as the inputs. For com-
pleteness, we investigate the necessity of the segmentation
masks. As shown in Tab. 6, without segmentation, the re-
construction results for both humans and objects are sub-
par, particularly for objects. Our analysis reveals that this
is primarily due to information interference from the back-
ground image. When the object’s color closely matches the
background, the model struggles to accurately discern the
object’s depth position, which significantly hinders human-
object interaction (HOI) reconstruction. By incorporating
segmentation, the model can more effectively identify the
relative depth positions of humans and objects, resulting in
improved reconstruction accuracy.

CDhuman↓ CDobject↓ Contactp↑ Contactr↑
CONTHO 4.99 8.42 0.628 0.496
CONTHO (w/o seg.) 6.16 19.23 0.440 0.348
Ours 4.59 8.00 0.662 0.554
Ours (w/o seg.) 5.67 19.39 0.473 0.446

Table 6. Ablation study of segmentation in the inputs.

Except using the segmentation masks provided by the

datasets, we can also extract the masks with off-the-shelf
segmentation models such as DetectronV2 [41]. This way,
the only input will be the RGB image. We evaluate the extra
time cost of obtaining the masks by DetectronV2 in Tab. 7.
After incorporating human and object segmentation into the
pipeline, the reasoning time slightly increases from 0.208
to 0.264 seconds. Benefiting from the extracted masks, our
model achieves much better HOI reconstruction results than
the ‘w/o seg.’ variant. Since the extracted segmentations
have not undergone manual correction, some inaccuracies
account for a slight decrease in global mesh reconstruction.

CDhuman↓ CDobject↓ Contactp↑ Contactr↑ Time(s)
Ours 4.59 8.00 0.662 0.554 0.208
Ours (w Det.) 4.66 8.10 0.664 0.550 0.264

Table 7. Comparison of segmentations provided by the dataset and
extracted by DetectronV2.

7.3. Location of graph residual blocks
We integrate the Human Graph Residual Block in all three
transformer encoder blocks. As for the proposed Object
Graph Residual Block, we investigate the optimal loca-
tion in Tab. 8. The results indicate that: i) Incorporating
the object graph residual block at any layer positively con-
tributes to human and object reconstruction. ii) Adding a
graph convolutional network (GCN) to the first and second
blocks yields more significant improvements in reconstruc-
tion. This suggests that the self-attention mechanism at
higher layers struggles to distinguish clear boundaries be-
tween human and object features. Therefore, our HOI-TG
only equips the second transformer encoder block with the
Object Graph Residual Block.

8. Generalization to in-the-wild images.
For generalization, Fig. 7 shows the estimated HOI of Inter-
Cap samples using HOI-TG trained on the BEHAVE dataset
and applying HOI-TG to images in the wild. For the first
row, we use the model trained on the BEHAVE [2] dataset
directly for testing on the InterCap [16] dataset. For the
second row, we directly use the model trained on the BE-
HAVE [2] dataset to test the reconstruction results of in-the-
wild images.The results indicate that HOI-TG possesses a
certain degree of generalization ability. However, given that



Human Graph Residual Block Object Graph Residual Block
Block1 Block2 Block3 Block1 Block2 Block3 CDhuman↓ CDobject↓ Contactp↑ Contactr↑

✗ ✗ ✗ ✗ ✗ ✗ 4.73 8.55 0.606 0.559
✓ ✓ ✓ ✗ ✗ ✗ 4.61 8.11 0.651 0.539
✓ ✓ ✓ ✓ ✗ ✗ 4.62 8.01 0.638 0.591
✓ ✓ ✓ ✗ ✓ ✗ 4.59 8.00 0.662 0.554
✓ ✓ ✓ ✗ ✗ ✓ 4.68 8.43 0.643 0.534
✓ ✓ ✓ ✓ ✓ ✓ 4.62 8.05 0.644 0.573

Table 8. Ablation study of the location of Object Graph Residual Block.

Figure 7. Estimated HOI of InterCap samples using HOI-TG
trained on BEHAVE (row 1) and of images in the wild (row 2).

our method is data-driven, the generalization capability of
HOI reconstruction in complex scenes still requires further
investigation.

9. Efficiency and limitations

9.1. Computational efficiency
We summarize the parameters, running time, and perfor-
mance of different methods in Tab. 9. The data related
to PHOSA [47] and CHORE [42] are provided by CON-
THO [31] and StackFLOW [17]. For StackFLOW [17],
CONTHO [31], and our HOI-TG, we evaluate the speed
using the same environment on a single RTX 4090 GPU,
employing a batch size of 1 for multiple inferences and
calculate the average running time. We only consider
the inference time, excluding data preprocessing. Accord-
ing to Tab. 9, our HOI-TG outperforms previous methods
in human-object interaction reconstruction while achieving
the fastest inference speed. Both the optimization-based
method PHOSA [47] and the neural field-based model
CHORE [42] require significantly longer inference time.
The post-optimization process of StackFLOW [17] also
consumes quite a lot of time. In contrast, our HOI-TG can
infer much faster and improves both global mesh recon-
struction and local contact modeling. The results indicate
that we have developed a more elegant and powerful archi-

tecture than previous approaches.

Method Params(M) Time(s) Chamfer Dist↓ F1 Score↑
PHOSA - 165.3 19.395 0.317
CHORE 18.19 312.2 8.120 0.523
StackFLOW 83.43 15.67 8.885 0.499
CONTHO 82.80 0.218 6.705 0.554
Ours 122.81 0.208 6.295 0.603

Table 9. Comparison of model efficiency and performance on BE-
HAVE [2] dataset.

9.2. Limitations
This section discusses cases where our HOI-TG fails to pro-
duce satisfactory reconstruction results and analyze the rea-
son.
Lying poses: Our model may not perform well on com-
plex or rare postures like lying down. As shown in the
first row of Fig. 8, our model cannot accurately predict
the posture of arms and legs and even cause mesh pene-
tration. We consider that is mainly because actions such
as lying down cause most body parts to be self-occluded.
Such self-occlusion poses a big challenge for the ResNet50
backbone in producing meaningful initial human mesh. As
a result, our model may fail to distinguish among different
human vertices and predict inaccurate human mesh and ob-
ject pose.
Purely symmetric objects: Accurately reconstructing
highly symmetrical objects such as spherical and square has
always been challenging in HOI reconstruction. The diffi-
culty of capturing the object details may result in inaccurate
rotation prediction. As shown in the second row of Fig. 8,
our model cannot accurately estimate the correct rotation
posture of the yoga ball.

10. More visual comparison results

We provide more HOI reconstruction results in the BE-
HAVE [2] and InterCap [16] datasets in Figs. 9 and 10.
Regarding complex interactive actions, HOI-TG surpasses



RGB HOI-TG (Ours) GT RGB HOI-TG (Ours) GT

Figure 8. Failure cases of our HOI-TG. We highlight the region with red circles.

CONTHO [31] in both human mesh reconstruction and ob-
ject posture estimation. Our model demonstrates an advan-
tage in dealing with mesh penetration and inaccurate object
posture. It also achieves higher reconstruction accuracy for
human-object interactions without physical contact.
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Figure 9. Qualitative comparison of 3D human and object reconstruction with CONTHO [31] on BEHAVE [2] dataset.
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Figure 10. Qualitative comparison of 3D human and object reconstruction with CONTHO [31] on InterCap [16] dataset.


