FRESA: Feedforward Reconstruction of Personalized Skinned Avatars
from Few Images

Supplementary Material

A. Data Acquisition

Data Capture. We visualize our dome capture data in Fig-
ure 1. For each subject, we capture 128 images from differ-
ent view points using a group of fixed cameras, and adopt
SuperNormal [3] to reconstruct the 3D scans for geometry
supervision. We further estimate 3D joints for each frame
from multi-view images, and adopt an incremental pose en-
coder [4] to obtain the pose vector p. With the diverse posed
clothed humans and high-quality scans, we can learn an ef-
fective universal prior that well generalizes to phone photos.
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Figure 1. Samples of dome data. Our dataset contains diverse
posed clothed humans paired with high-quality 3D scans as ground
truths, which facilitates learning an effective universal prior.

Pseudo-GT Canonical Meshes. To resolve the coupled
ambiguity between canonical shapes and skinning weights,
we construct pseudo-GT' canonical meshes as the regular-
ization for canonical-space stage training. Specifically, we
adopt FlexiCubes [16] as the 3D geometry representation
and build a cubic grid with G = 256° vertices near the
rigged body template. We then initialize the SDF value s of
each grid vertex as the signed distance to the template, and
optimize canonical vertices V parameterized by the Flexi-
cube parameters s, «, 3, [16] such that:
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where R4(-) and R, (-) are renderer functions for normal
and depth rendering, V is the posed vertices obtained by
forward LBS (where skinning weights queried from nearest
template vertices), L, is the regularization term in [16], and
D*, N* are ground truth depth and normal images for posed
scans. We empirically observe that such unposing strategy
reduces artifacts of over-stretched triangles as shown in Fig-
ure 2. However, since such unposing requires a complete
optimization process and takes 20 minutes to converge, it is
only suitable for data preparation.

B A AN AN AN
A AR

V =arg H{}H(HRd(‘N’)

ik 'R R 'R

Posed Input Naive Unpose Naive Unpose + Filter Pseudo GT

Model Output

Figure 2. Unposing Comparison. We compare the results be-
tween naive unposing (used in the inference pipeline) and pseudo
GT via optimization (used for data preparation). The second ap-
proach produces more plausible results but requires significantly
more time. Note we filter edges with length larger than 1 x 1074
to reduce noises.

Approval of Usage. All participants involved in dome cap-
ture data and phone photos have signed a consent form that
authorize the usage of their images for model development
and academic publications.

lideal GT meshes should be obtained by unposing scans with person-
alized skinning weights, which is not available in canonical-space stage.



B. Canonicalization Details

Pose Tracking for Photos. We use an artists designed
rigged body mesh as the template, which contains J = 67
joints. For each front and back view photo, we estimate its
2D joint positions using [9], and optimize the pose vector
p to minimize the 2D projection loss similar to [2]. We
further determine the absolute scale of the subject based on
a pretrained statistical prior model using PCA coefficients.
The overall optimization process takes about 1 minute per
frame. For a fair comparison, in the main paper, we report
inference time for all methods excluding the pose tracking
time as we assume known poses in our pipeline.

Note that to ensure a practical use of our method, we
do not require a perfect alignment between front and back
views for causally taken photos, i.e. we do not require
known camera poses, and photos do not need to be synchro-
nized in time, as illustrated in Figure 3. Such casual inputs
can be robustly handled with the universal clothed human
prior and multi-frame aggregation, as shown in main paper.
In addition, since there are no GT body poses for phone
photos, we use an off-the-shelf pose estimator to estimate
body poses for each view. Demo results in the main pa-
per show that our method can robustly generate plausible
avatars under this imperfect unposing, ensuring a practical
use of our method. Moreover, the proposed multi-frame ag-
gregation approach can further improve robustness against
inaccurate pose estimation in individual frame.

Figure 3. Illustration of settings for photos. We use estimated
body poses and do not require perfect alignment between views.

3D Lifting. We follow [19] to use d-BiNI method to obtain
the lifted front and back surface meshes for each frame. The
surface depth is initialized based on the tracked poses, i.e.
the surface depth of posed body template. We visualize the
resulting unposed surface meshes in Figure 4.

In contrast to [19] that attempts to directly complete the
lifted meshes in the 3D space, we re-render them into 2D
images as initial conditions, and infer the canonical shape
from scratch for two reasons: (i) it produces a more plau-
sible boundaries by jointly refining geometry in both vis-
ible and invisible parts, as shown in Figure 5. (ii) it can
learn a personalized body shape instead of a fixed shape
bounded by the initial depth, as shown in Figure 6. Fi-
nally, we choose to use two views in the paper as the lifting
and pose tracking process work mostly robust in these two
views. However, our method can still produce a plausible
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Figure 4. Illustration of Lifted Surface Meshes. Note we re-
moved the over-stretched edges after unposing. The lifting pro-
cess produces two unposed surface meshes but can not be perfectly
aligned in boundary.

side view geometry by learning across diverse subjects.

C. More Implementation Details
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Figure 5. Visualization in Four Views. By only taking inputs
of front and back views, our method can infer plausible side-view
geometry and produce a consistent boundary.
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Figure 6. Results of Inferred Body Shape. Our method can pro-
duce personalized body shapes based on input conditions and is
not restricted to the template shape.

We train our model using N = 5 input frames, which
achieves the best balance between plausibility and fidelity.
In inference, our model can be applied to an arbitrary num-



ber of input frames based on availability. To increase the
model generalizability, we apply a data augmentation by
mixing unposing results from both d-BiNI and 3D scans
when training the model. Finally, we use [1] to tetrahedral-
ize the volume near the canonical template (with a distance
of 0.2m), resulting in a grid of resolution 256. More details
about our network architecture are included in Appendix D.
Inference Time Details. We report the inference time for
one input photo with image size 1280 x 960. Specifically, (i)
the segmentation and normal estimation for [9] takes 4.90s,
(i) the d-BiNI time for both views takes 9.91s, (iii) the
unposing (including finding the nearest template vertices)
takes 1.54s, (iv) the canonical rendering takes 0.06s, and (v)
the overall model inference takes 1.64s, thus the total in-
ference time is 18.05s. All time are reported with a single
NVIDIA A100 GPU.

Baseline Implementation. For [7], we use the test code and
pretrained models provided by the author. Since the method
only takes a single image as input, we test its reconstruction
quality by using the target posed image as input. For [0, 20],
we modify its code to use our rigged template and canonical
pose instead of SMPL-X [12] template. For [6], we also fol-
low their implementation to use nearest template vertices’
skinning weights, weighted by the point-to-point distances
in deformed space, while [20] only uses a template mesh to
initialize the DMTet grid.

D. Network Architecture

Multi-Frame Encoder. We show the architecture for f,(-)
in Figure 11. For simplicity of notation, we refer to all in-
put features as these after concatenating the front and back
views, e.g. N € R2*512x512x3 "and thus discarding the
view dependency in the superscript and assume all features
below have a batch size of 2. In f(-), the DeepLabV3 [5]
backbone produce a feature map of shape 64 x 64 x 256,
and the output channels for the Conv2d are [128, 128,
96] respectively. All upsampling blocks are implemented
as 2x bilinear interpolation, thus the dimension for L; is
256 %256 x 96. In fr(+), the output channels for the Conv2d
are [64, 96, 96, 96, 96] respectively. Note we follow [17]
to include positional encoding before the first convolution
block, thus its input channel is 6 instead of 8. Except that
the first convolution block in f3,(+) has a stride 3, all other
blocks have a stride 1. The final dimension for H; is the
same as L;. In f;(-) the output channels for the Conv2d are
[256, 128, 96], and the biplane feature B; has a shape of
512 x 512 x 96.

Canonical Geometry Decoder. We show the architecture
for f,(-) in Figure 12. For each grid vertex g, we sample
the feature on B; to obtain the feature ¢ € R?®. The output
channels for each Linear block is [64, 64, 64, 64, 4]. Note
here we include BatchNorm (BN) [8] and treat each vertex
as a batch sample. We observe this module can be used to

replace geometric initialization [21] to ensure a valid mesh
at initial steps, i.e. avoid situations where the network pre-
dicts all positive or negative SDF values.

Skinning Weight Decoder. We show the architecture for
fs(+) in Figure 12. Except that the last linear layer has an
output dimension of 161, all other modules follow the same
architecture as fq(-).

Pose-dependent Deformation Decoder. We show the ar-
chitecture for f.(-) in Figure 12. We first render front and
back position maps P; € R?12%512x3 follow [11] and con-
catenate with the rendered front and back images of the
inferred canonical mesh, and forward it to fy(-) (with the
same architecture as f.(-)) to produce a residual biplane
B, € R512x512x96 We then sample pixel feature 1, € R
as the feature for each vertex in the canonical mesh. The
output channels for each Linear block is [64, 64, 64, 64, 3].

E. More Animation Comparison

In this section, we compare with SCANimate [15], which
optimizes personalized skinning weights and canonical
shapes jointly in an implicit field. As shown in Figure 7,
while such approach produces smooth deformation, the use
of implicit field results in low geometry resolution and thus
missing fine-grained details. Moreover, [15] rely on time-
consuming per-subject fitting and 3D posed meshes as in-
puts, whereas our method can achieve instant feed-forward
reconstruction from few images.
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Figure 7. Animation comparison with SCANimate. For [15],
we use FRESA reconstructions as reference posed meshes. Note
that hand motions are missing as it is SMPL-based.

Comparison with Reconstruction Methods

In this work, we aim to generate personalized avatars that
can be realistically animated driven by novel poses. In con-
trast, other baselines like [10, 13, 14, 18, 19, 22] are often
characterized as single-image reconstruction method, which
focuses on recovering the geometry for the input pose only,
and animates posed avatars using a fixed skinning weights.
Hence they do not study avatar animation and thus are not
closely related to our work. Moreover, in the experiments
we evaluate the animation quality on unseen poses and pre-
dict pose-dependent deformation to recover fine-grained de-
tails like wrinkles, thus a fair comparison is difficult to per-
form with the reconstruction methods. For completeness,



we show in Figure 8 that our method can produce high-
quality geometry details comparable to [10, 19, 22], thanks
to the effective prior learned from diverse subjects. Consid-
ering fairness of evaluation, we do not quantitatively bench-
marking reconstruction quality on our dataset.
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Figure 8. Qualitative comparison with single image reconstruc-
tion methods. Our method produces high-quality geometry de-
tails comparable to ECON [19], SIFU [22], and PSHuman [10] on
both dome data and phone photos.

F. Texture Reconstruction

Our method can be extended to generate texture for the re-
constructed personalized meshes. In this section we pro-
vide one sample implementation for texture reconstruction.
Specifically, we first unpose lifted surface meshes with
back-projected vertex color (refer to Figure 4 as an exam-
ple) and render the RGB images as input. We then encode
the RGB images into a separate bi-plane feature (using a
encoder with the same architecture as f.(+)), and pose the
canonical avatar by the target pose vector p;. For each
rendered pixel of the posed avatar mesh, we use the cor-
responding 3D position on the canonical mesh to sample
the bi-plane feature, which is forwarded to a MLP decoder
(with the same architecture as f.(-)) to predict the RGB
color for that pixel. We show in Figure 9 that this approach
produces realistic rendering results.

Figure 9. Results of Textured Meshes. Our method can be ex-
tended to produce high-resolution texture for realistic rendering.

G. Failure Cases

In our method, the deformation module is only conditioned
on a skeletal pose vector, which is deficient to model com-
plex dynamics such as motions of hair or extremely loose
garments like a long dress. We show failure cases in Fig-
ure 10, where the results posed deformation do not match
the real dynamics. Future works are encouraged to explore
more comprehensive pose conditions or physics-inspired
models to tackle this issue.
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Figure 10. Failure Cases. With only the pose vector as condition,
our method fails to produce complex hair motions and dynamics
of extremely loose garments.
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Figure 11. Model Architecture for multi-frame encoder f.(-). Note we stack two views together and omit the superscript v. The final
bi-plane feature is obtained by summing the feature for each frame B;. & denotes channel-wise concatenation.
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Figure 13. Model Architecture for skinning weight decoder f(-).
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Figure 14. Model Architecture for pose-dependent vertex displacement decoder f.(-).
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