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A. Overview

This supplementary material provides additional insights,
details, and results to support our FSFM framework com-
prehensively, structured as follows:

e Facial Masking Strategies in Masked Image Modeling
(MIM) (Sec. B): We delve into the impact of different fa-
cial masking strategies on naive MAE, including quantita-
tive and qualitative analysis of attention differences.

e Instance Discrimination (ID) in FSFM (Sec. C): We high-
light the connections and distinctions between our method
and prior works that also integrate ID (or Siamese encoder
architecture) into MIM (or degraded inputs).

e Implementation Details (Sec. D): Detailed descriptions of
hyperparameters, pretraining, and finetuning settings.

e Additional Results and Comparisons (Sec. E): Extended
experiments comparing FSFM against other models like
ViT-based FAS and the base vision-language pertaining
(VLP) model, CLIP.

o Ablations and Visualizations (Sec. F): Supplementary ev-
idence validating FSFM’s ability to learn robust and trans-
ferable facial representations.

e Limitations (Sec. G) of our work.

B. Revealing the secrets of facial masking
strategies in MIM

In the main paper, we explore various facial masking strate-
gies for masked image modeling (MIM) in FSFM, with ad-
ditional visualizations provided in Fig. 1, and validate the
effectiveness of CRFR-P masking through ablation stud-
ies on downstream face security tasks. However, a critical
question remains: how do different facial masking strate-
gies affect the MIM-pretrained model or its learned repre-
sentations of real faces?

*Corresponding author

To address this, we quantitatively and qualitatively an-
alyze the properties of attention maps. Given that most
MIM-pretrained models, including ours, are built on the Vi-
sion Transformer (ViT) architecture [17], where the main
component, the attention mechanism [46], is naturally in-
terpretable [50]. Here, we adopt the naive MAE (the MIM
network in FSFM) and follow its settings [23] with ViT-
B/16 as the encoder and a 75% masking ratio. We con-
duct self-supervised pretraining on real face images from
FF++_o [40] (the default dataset for our ablations). We al-
ter only the masking strategy, encompassing simple random
masking, Fasking-I, FRP, CRFR-R, and CRFR-P, and ex-
amine the following aspects of attention heads in the pre-
trained models: 1) mean attention distance to measure the
flow of local and global facial information; 2) Kullback-
Leibler (KL) divergence to investigate the diversity of at-
tention; 3) visualized attention maps to uncover key regions
of focus.

B.1. Local or global?

To explore whether the pretrained model attends to faces
locally or globally, we calculate the mean attention dis-
tance [17] in each attention head across all blocks/layers,
as shown in Fig. 2 (Top). The model (MAE ViT-B/16 en-
coder) pretrained with simple random masking tends to fo-
cus on local information in the lower blocks and shifts to-
ward global attention in the deeper blocks, similar to the su-
pervised model [17]. Fasking-I primarily aggregates global
information as the visible patches predominantly consist of
broad backgrounds and skin. FRP also causes large mean
attention distances, but these are slightly smaller than those
of Fasking-I, mainly because visible patches in FRP are
more evenly distributed across all facial regions. CRFR-R
fully masks a facial region before applying random mask-
ing, which encourages attention to different regions, con-
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Figure 1. Additional visualizations of different facial masking strategies. (a) Random masking [23]. (b) Fasking-I adapted from [3]. (c)
FRP: Facial Region Proportional masking. (d) CRFR-R: Covering a Random Facial Region followed by Random masking. (¢) CRFR-P:
Covering a Random Facial Region followed by Proportional masking.
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Figure 2. The mean attention distance (Top) and Kullback-Leibler divergence (Bottom) of each attention head (small dot) across all blocks
(x-axis) in the ViT-B/16 encoder pretrained by MAE [23] with (a) Random, (b) Fasking-I, (c) FRP, (d) CRFR-R, and (¢) CRFR-P masking

strategies, along with the average one (large dot) for each block.

sequently resulting in more global attention in the middle
(3" to 8™) blocks compared to the simple random mask-
ing counterparts. Compared with CRFR-R, CRFR-P masks
the remaining regions proportionally instead of randomly,
making the 1% block more global w.r.t. the more unmasked
regions. Compared with FRP, CRFR-P fully masks a region
before applying proportional masking, which exposes more
patches within other regions at the same masking ratio, thus
leading to more local attention than FRP.

Overall, the model pretrained with CRFR-P exhibits
well-distributed attention distances across all blocks, indi-
cating a synergistic effect of FRP and CRFR-R, enabling
appropriate attention to both local and global information.

B.2. Similar or different?

To assess whether the pretrained model focuses on similar
or different tokens, we compute the Kullback-Leibler (KL)

divergence between attention maps of each head across all
blocks, following [50], as shown in Fig. 2 (Bottom). As the
visible patches are mostly background and skin, the model
pretrained with Fasking-I aggregates similar tokens, leading
to low KL divergence across all attention heads. Interest-
ingly, we find that proportional masking reduces diversity
among attention heads, likely due to its homogeneous pre-
sentation of visible tokens, i.e., derived from each facial re-
gion. In contrast, covering a random facial region increases
attention diversity, as evidenced by higher KL divergence
in CRFR-R versus the simple random masking counterparts
and CRFR-P versus the FRP counterparts. This suggests
that the model is compelled to look at different regions after
fully masking a facial region.

Overall, the model pretrained with FRP lacks diversity
across attention heads, while CRFR-R shows excessive di-
versity. Similar to the phenomenon observed in mean atten-
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Figure 3. Visualization of the self-attention map averaged across all heads from the last block of the ViT-B/16 encoder pretrained by
MAE [23] with (a) Random, (b) Fasking-I, (c) FRP, (d) CRFR-R, and (¢) CRFR-P masking strategies. The rectangles in (a) Random and
(e) CRFR-P highlight the regions of interest (ROI) for comparison. All faces, except for the first row, are from the test set and were unseen

during pretraining.
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Figure 4. Comparison of typical target views and designs adapted for FSFM, derived from self-supervised pretraining methods that integrate
both MIM and ID (or Siamese encoder architecture). (a) Visible patches from a different mask [2, 30, 47, 54]. (b) Masked patches from

the same mask [9]. (c) Full patches without masking [1, 27, 45, 51, 55].

tion distance, CRFR-P strikes a balance in KL divergence
across different heads, which also seems to act as a co-effect
of FRP and CRFR-R counterparts, implicating appropriate
attention to different key tokens.

B.3. Key regions?

To uncover which regions of real faces are critical to the
pretrained model, we visualize the mean attention map of
the last block and overlay it onto the input face in Fig. 3,
as the pretext decoder or downstream head follows the last
block. We can observe significant attention differences in
salient regions across different masking strategies. At first
glance, the attention regions from simple random masking
appear to cover the entire face. However, it predominantly
highlights the skin, which can be easily recovered from vis-
ible neighboring patches, while ignoring more challenging
key regions. This suggests that the model solves face recon-
struction through shortcuts instead of learning meaningful
features. Similarly, the attention in Fasking-I is distributed
across skin and background regions, as expected. While
FRP and CRFR-R activate more attention areas, they still
struggle to focus on key facial regions. In contrast, CRFR-
P highlights attention across key regions like the eyes, eye-

brows, and nose, indicating that the pretrained model tack-
les the challenge head-on: focusing on meaningful region-
level features beyond just low-level pixels of real faces.

In summary, the CRFR-P masking strategy effectively
directs attention to critical facial regions with appropriate
range and diversity for both intra-region consistency and
inter-region coherency, enabling the pretrained facial model
to avoid trivial solutions (shortcuts) and capture the intrinsic
properties of real faces. Furthermore, we hope this section
provides new insights into fundamental face representation.

C. Connection and analysis of ID in FSFM

We illustrate the relation and distinction between our
method and previous works that integrate ID (or Siamese
encoder architecture) into MIM (or degraded input). While
these hybrid approaches have demonstrated effectiveness in
natural vision and face analysis, our empirical studies reveal
that face security tasks necessitate more precise and reliable
semantic alignment from the ID network. In response, we
distinguish key designs such as target view & network struc-
ture, data augmentation, and loss function, which support
local-to-global correspondences in FSFM.



C.1. Target view and network design

From the perspective of the input view, the online/student
branch typically processes visible patches from the masked
image, while the target/teacher branch varies across meth-
ods. Thus, we incorporate different target views and de-
sign paradigms into FSFM, as shown in Fig. 4. (a) Visible
patches from a different mask [2, 30, 47, 54]: the online and
target encoders produce latent features z; and z;’ for subse-
quent contrast learning. (b) Masked patches from the same
mask [9]: to align the representation r* of masked patches
with the encoded target 2", a masked representation (rep)
decoder predicts 7" from the visible tokens z; output by
the online encoder. This decoder computes cross-attention
between masked tokens (as Q) and full tokens (as K and V),
following the latent regressor in CAE [9] and resembling
the prompting decoder in [24]. (c) Full patches without
masking [1, 27, 45, 51, 55]: some methods [1, 51, 55] are
decoder-free designs that match visible online features z
with full target features zJ to compute £;p (22, z{ ). Unlike
CMAE [27], which introduces a feature/rep decoder after
the online encoder, i.e., L1p(rf, zf ), we add an additional
target rep decoder to compute Lrp (7, th ) in a disentan-
gled representation space. i.e., Siamese rep decoders. This
design further reduces the gap in distribution between low-
level pixel features and high-level semantic representations.
Based on our ablations (in the main paper) of down-
stream face security tasks, FSFM performs better when us-
ing full patches as the target view alongside Siamese rep
decoders. By predicting the entire face representation from
visible parts, the ID network aligns global and local views
of the same face. In light of this, FSFM structures the en-
coded space with semantically complete facial representa-
tions through “local-to-global” correspondences [5], which
endows the encoder with strong facial discriminability.

C.2. Data augmentation

Most ID methods [5-8, 20, 22] rely on strong data augmen-
tations, including spatial and color transforms, to prevent
trivial solutions. For MIM, applying strong augmentations
such as color enhancements is suboptimal [23], as mask-
ing corruption itself effectively regularizes the pretext task.
This is further evident in methods [27, 30, 51] that combine
MIM and ID, where only simple augmentations—random
size cropping or flipping—are applied to the masked input
of the online branch, while strong or simple augmentations
are used for the full (unmasked) target view.

In contrast, our FSFM behaves well without any data
augmentation in either the online or target branches. This
may stem from the semantic integrity preserved in unaug-
mented inputs, which benefits the learning of global face
identity [47], especially in face security tasks where forgery
and spoofing cues may be implicit anywhere. Additionally,
the proposed CRFR-P masking strategy inherently intro-

Pretrain Intra-FF++ (c23)  Intra-FF++ (c40)

or Init F-AUC V-AUC F-AUC V-AUC
VIiT-B [17] Scratch 70.06 72.98 70.36 74.33
ViT-B [17] Sup(IN) 97.30 98.80 88.65 93.22
MAEE [23] ViT-B SSL(LN) 98.64 99.61 91.35 94.46
DINO [5] ViT-B SSL(LN) 9835 99.39 89.93 94.31
MCEF [47] ViT-B SSL(LFc) 97.84 99.19 89.81 94.20
FSFM ViT-B (Ours) SSL(VF2) 97.74 99.03 92.08 95.41

Base Model

Table 1. Intra-dataset evaluation of deepfake detection (DfD) on
FF++ [40]. All base models are finetuned and tested on the ¢23
and c40 versions, respectively. Best results, second-best.

duces spatial variance tailored to facial structures, rendering
simple augmentations (crop and flip) unnecessary. Conse-
quently, FSFM processes only a single view per face image.

C.3. Loss function for ID

We consider two main types of loss functions for ID: con-
trastive [6, 8] and non-contrastive [7, 20]. Contrastive loss
pulls positive views from the same sample together and
pushes negative views from different samples apart. We use
the widely adopted InfoNCE [38] as the contrastive loss.
Non-contrastive loss maximizes the similarity of positive
representations only. We use mean squared error (MSE) in
BYOL [20] and negative cosine similarity (NCS) in Sim-
Siam [7] as non-contrastive loss, respectively, but in an
asymmetric formulation, as detailed in the main paper.

In FSFM, we observe that NCS outperforms the con-
trastive loss InfoNCE, even though methods combining
MIM and ID [27, 30, 47, 51] favor the latter. We spec-
ulate this is because, in large-scale pretraining on real
faces, the inter-image contrast introduced by negative sam-
ple pairs pushing one real face away from others—does
not help our model learn representations beneficial for face
security tasks. Thus, we adopt asymmetric NCS by default
to learn intra-face correspondences by matching the online
anchor view with the target view of the same sample.

D. More implementation details

D.1. Pretraining settings

We set the mask ratio r to 0.75, similar to the baseline [23],
as our ablation shows that this high ratio is also favorable
for our FSFM. We do not use any data augmentation (not
even crop and flip used in [23]) and only normalize the in-
put faces during pretraining. We empirically set the loss
weights Ag. and Ay to 0.007 and 0.1, respectively. The
projection and prediction heads are 2-layer MLPs follow-
ing BYOL [20], with batch normalization (BN) replaced
by layer normalization (LN) for our ViT-based architec-
ture. The EMA momentum coefficient for updating the tar-
get branch starts from 0.996 and increases with a cosine
scheduler, following BYOL [20]. We pretrain our model
from scratch for 400 epochs on 4 NVIDIA RTX A6000



Method Pretrain DG FAS Technique OCI—-M OMI—-C OCM—I ICM—0 Avg.

or Init DM AL CL ML PL HTER] AUCT HTER| AUCT HTER| AUCT HTER| AUCT HTER/| AUCT
Base model
VIiT-B [17]* Scratch 15.25 90.07 36.98 63.94 10.75 96.09 37.50 66.03 25.12 79.03
ViT-B [17]* Sup(IN) 5.00 97.29 11.51 95.61 10.60 94.03 17.35 88.35 11.12 93.82
MAE [23] ViT-B* SSL(LN) 8.17 97.37 2791 77.90 18.02 91.54 25.36 80.76 19.86 86.89
DINO [5] ViT-B* SSL(LN) 7.92 97.09 21.28 87.79 21.35 84.48 17.44 89.75 17.00 89.78
MCEF [47] ViT-B* SSL(LFc) 6.33 98.29 21.40 86.72 13.13 95.15 16.76 89.59 14.41 92.44
FSFM ViT-B (Ours)* SSL(VF2) 6.58 97.43 4.30 99.10 14.63 90.96 10.02 96.23 8.88 95.93
ViT-based specialized method (Venue)
ViTranZFAS [18] (IICB’21)* Init(IN) 10.95 95.05 14.33 92.10 16.64 85.07 15.67 89.59 14.40 90.45
TransFAS [48] (TBIOM’22)* Init(IN) v 7.08 96.69 9.81 96.13 10.12 95.53 15.52 91.10 10.63 94.86
TTN-S [49] (TIFS’22)* Init(IN) v 9.58 95.79 9.81 95.07 14.15 94.06 12.64 94.20 11.55 94.78
DiVT-V [32] (WACV’23)* Init(IN) v v 10.00 96.64 14.67 93.08 571 97.73 18.06 90.21 12.11 94.42
TTDG-V [56] (CVPR™24)* Init(IN) v 4.16 98.48 7.59 98.18 9.62 98.18 10.00 96.15 7.84 97.75

Abbreviation: Sup-Supervised SSL-Self-Supervied Init-weight initialization IN-ImageNet DG-Domain Generalization
DG FAS Technique: DM-Depth Maps AL-Adversarial Learning CL-Contrastive Learning (or triplet, similarity loss) ML-Meta Learning PL-Prototype Learning

Table 2. Cross-domain evaluation on face anti-spoofing (FAS) using visual-only ViT-based models* without including the supplementary
data in [26]. For a fair comparison, the results of specialized methods are cited from the original papers. Best results, second-best.

Method Pretrain Train Test Set Video-level AUC(%)T Avg. Method Pretrain Train Test Set Frame-level AUC(%)1 Avg.
or Init Set CDFV2 DFDC DFDCP WDF AOurs or Init Set CDFV2 DFDC DFDCP WDF AOurs
Base model Base model
Xception [12] Sup(IN) FF++ 76.39 70.62 72.24 76.11 14.01 | Xception [12] Sup(IN) FF++ 69.52 68.20 68.94 68.83  15.117
EfficientNet-B4 [44] Sup(IN)  FF++  79.81 71.85 66.95 7642  14.117 | EfficientNet-B4 [44] Sup(IN)  FF++ 7337 69.47 64.37 7195 1427
ViT-B [17] Scratch FF++  64.08 66.73 72,62  60.36 2191 | VIT-B[17] Scratch FF++ 61.14 64.27 69.00 60.68 20.21
ViT-B [17] Sup(IN)  FF++ 8624  74.48 82.11 8120 697 | VIT-B[17] Sup(IN)  FF++ 7743 71.09 7407 75.86 947
MAE [23] ViT-B SSL(IN) FF++ 79.51 75.93 87.10 80.96 7.01 MAE [23] ViT-B SSL(IN) FF++ 72.64 72.18 79.81 73.94 9.47
DINO [5] ViT-B SSL(IN)  FF++ 8047 7690 8464 82.06 691 | DINO [5]ViT-B SSL(IN)  FF++ 7388 7278 7731 75.08 9.21
MCF [47] VIT-B SSL(LFc) FF++ 80.25 73.61 8255  79.79 8.81 | MCF [47] VIT-B SSL(LFc) FF++ 73.16 69.63 7578 7410 10.81
CLIP [39] VIT-B VLP(WIT) FF++ 7895 73.83 8238  78.60  9.57 | CLIP[39] ViT-B VLP(WIT) FF++  73.02 70.66 7746  72.04 10.71
FSFM ViT-B (Ours) SSL(VF2) FF++ 91.44 83.47 89.71  86.96 - FSFM ViT-B (Ours) SSL(VF2) FF++ 85.05  80.20 8550 85.26 -

Abbreviation: Sup-Supervised SSL-Self-Supervied VLP-Vision Language pretraining Init-weight initialization
Dataset: IN/1M natural images [14] LFc/20M facial images [47] WIT/400M (natural image, text) pairs [39] VF2/3M facial images [4]

Table 3. Cross-dataset evaluation on deepfake detection (DfD), adding CLIP [39] ViT-B/16 image encoder as a base model. Left: video-
level AUC, Right: frame-level AUC. All base models are finetuned on FF++ (c23) and tested on unseen datasets. Avg.AOurs denotes the
average AUC difference between our FSFM and other methods. Best results, second-best.

GPUs. Other settings follow the defaults in MAE [23]: we
use the AdamW [36] optimizer with momentum £, = 0.9,
B2 = 0.95; we apply the linear Ir scaling rule [19] with a
base learning rate of 1.5e-4; we adopt a cosine decay [37]
learning rate schedule with a warmup epoch of 40; we main-
tain the effective batch size as 4096 = 256 (batch size per
GPU) x 4 (GPUs) x 4 (accumulated gradient iterations).

D.2. Finetuning settings in downstream tasks

For finetuning the ViTs from FSFM and other pretrained
models, we adopt identical settings except for weight ini-
tialization, detailed below.

Deepfake Detection We use the c23 (HQ) version of
FF++ [40] with official train/val splits for finetuning. We
sample 128 frames per real video (the original YouTube
subset) and 32 frames per forgery video (including Deep-
fakes, Face2Face, FaceSwap, and NeuralTextures subsets).
We follow the official test split in other unseen datasets for
testing, including CDFV2 [31], DFDC [16], DFDCp [15],
and WDF [57]. We sample 32 frames per testing video. We
use DLIB [29] to extract faces (without alignment and pars-
ing) and resize them to 224 x224. As WDF already provides
224 %224 facial images, we directly use its test set without
processing. We add only one linear layer as the binary clas-
sifier after averaging all non-[CLS] token features. We set
the batch size to 64, the base learning rate to 2.5e-4, and the

finetuning epochs to 10 (50 for ViT-B Scratch). Other set-
tings adhere to the MAE ImageNet finetuning recipe [23].

Face Anti-Spoofing In the main paper, we adopt the 0-
shot MCIO setting (Protocol 1) in [26] and include CelebA-
Spoof [52] as supplementary data for FAS finetuning. We
set the batch size to 12 for each training domain. We append
the MLP head after averaging all non-[CLS] token features
instead of using [CLS] ones [26], to align with other face se-
curity tasks. Additionally, for a fair comparison with other
visual-only ViT-based methods, we additionally follow [56]
and report the best performance without including the sup-
plementary data, as presented in Sec. E.2.

Diffusion Face Forgery Detection For the training set,
we sample 32 frames from each real video (the original
YouTube subset) and each forgery video (the Deepfakes
subset) from FF++ (c23) [40]. For validation and testing
sets, we follow the splits provided by the DiFF bench-
mark [10]. We use DLIB [29] to extract faces (without
alignment and parsing) and resize them to 224 x224. We
add one linear layer as the binary classifier after averaging
all non-[CLS] token features. We set the batch size to 256,
the base learning rate to Se-4, and the finetuning epochs to
50. Other settings adhere to the MAE ImageNet finetuning
recipe [23].



Method Pretrain OCI-M OMI—C OCM—I ICM—0 Avg.

or Init HTER| AUCT HTER| AUCt HTER| AUCT HTER| AUCt HTER| AUCT
Base model
ViT-B [17] Scratch 1537  90.73 3537 6823 1475 9418  31.65 7155 2428 81.17
ViT-B [17, 26] Sup(IN) 3.52 98.74 2.42 99.52 8.45 96.91 11.86  94.62 6.56 97.44
MAE [23] ViT-B SSL(LN) 10.32  94.87 1591 89.96 1554 91.13 16.51 90.29 1457  91.56
DINO [5] VIiT-B SSL(LN) 6.73 97.15 13.44  93.90 1427 9356 1555  90.99 1250 93.90
MCEF [47] ViT-B SSL(LFc) 4.00 98.84 8.46 96.90 8.02 97.39 10.70 95.64 7.80 97.19
CLIP [39] ViT-B VLP(WIT) 4.29 98.76 5.00 98.89 7.14 97.92 6.09 98.12 5.63 98.42
FSFM ViT-B (Ours) SSL(VF2) 378 99.15 3.16 99.41 4.63 99.03 7.68 97.11 4.81 98.68

Abbreviation: Sup-Supervised SSL-Self-Supervied VLP-Vision Language pretraining Init-weight initialization
Dataset: IN-ImageNet1K [14] LFc-LAION FACE cropped [47] WIT-WebImageText [39] VF2-VGGFace2 [4]

Table 4. Cross-domain evaluation on face anti-spoofing (FAS), adding CLIP [39] ViT-B/16 image encoder as a base model. Best, second.

Pretrain Test Subset (AUC%1) Avg. w/o
Method orlnit  FF++ T2I oI FS  FE FF++
ViT-B [17] Scratch 9202 6219 6999 6087 6730  65.09
VIiT-B [17] Sup(IN)  99.15 33.38 3583 5220 5542 4421
MAE [23] ViT-B SSL(IN) 9925 33.01 3288 4777 5870  43.09
DINO [5] ViT-B SSL(IN) 9930 3385 36.02 6037 63.18 4835
MCF[47] ViT-B  SSL(LFc) 99.39 39.09 38.67 3435 5602  42.03
CLIP [39] VIT-B  VLP(WIT) 99.33 69.63 6625 6523 57.07  64.54
FSFM ViT-B SSL(FF++.0) 9931 61.74 7191 7131 7898  170.99
Table 5. Cross-dataset evaluation on DiFF benchmark [11].

adding CLIP [39] ViT-B/16 image encoder as a base model. All
base models are finetuned only on the FF++_DeepFake (c23) [40].
Best results, second-best.

E. Additional experimental results

E.1. Comparison of intra-dataset DfD on FF++

While our primary objective focuses on cross-domain gen-
eralization for real-world applicability, we provide an intra-
dataset evaluation of deepfake detection (DfD) on Face-
Forensics++ (FF++) [40], as presented in Tab. 1. The
metrics on the FF++_¢23 show that FSFM maintains com-
parable intra-set performance while significantly improv-
ing cross-dataset generalization. Moreover, when evalu-
ated on the more challenging high-compression (c40) ver-
sion, FSFM outperforms all baseline vision models, further
demonstrating its robustness.

E.2. Comparison with ViT-based FAS

In a fair comparison with visual-only ViT-based face anti-
spoofing (FAS) methods, our method also significantly out-
performs all base models, as shown in Tab. 2. FSFM sur-
passes most counterparts and ranks second in average met-
rics. TTDG-V [56], which introduces test-time domain gen-
eralization and explicit optimization goals for FAS, per-
forms better than ours in two out of four target domains
(OCI—=M and OCM—I). While optimizing for a specific
downstream task is beyond the scope of this study, incorpo-
rating special auxiliary supervision or domain generaliza-
tion (DG) techniques into our pretrained model may further
improve its generalization ability for face presentation at-
tack detection.

E.3. Comparison with CLIP

Another line of representation learning, vision-language
pretraining (VLP), particularly contrastive language-image
pretraining (CLIP) [39], has shown remarkable zero-shot
and generalization capabilities across diverse downstream
tasks. Recent studies have successfully tailored CLIP
to specific face security tasks, including deepfake detec-
tion [28, 41, 43], face anti-spoofing [21, 25, 34, 35, 42],
and diffusion forgery detection [13, 33, 53]. These text-
aided methods differ fundamentally from our FSFM, which
is vision-only, self-supervised, and task-agnostic. More-
over, VLP demands extensive (image, text) data pairs along
with significant computing resources for the additional text
encoder. Despite these, we include CLIP as a base vision-
language model (VLM) for comparison.

Specifically, we borrow the CLIP image encoder, also
a ViT-B but pretrained on the WIT dataset with 400M im-
age& text pairs, and finetune it on downstream face security
tasks under the same settings as other base models. We sup-
plement the corresponding results on deepfake detection,
face anti-spoofing, and diffusion face forgery detection in
Tab. 3, Tab. 4, and Tab. 5, respectively. We can observe that
CLIP ViT-B transfers better than other base vision models
on FAS and DiFF tasks, benefiting from the extensive data
scale of multi-modal supervision. However, directly ap-
plying CLIP ViT-B to DfD exhibits inferior generalization.
In contrast, our proposed FSFM consistently outperforms
CLIP ViT-B across downstream face security tasks.

F. More ablations and visualizations

F.1. Ablation studies

This subsection presents additional ablations. Unless other-
wise stated, the default settings follow the main paper.

Effect of Masking Ratio r We also examine the impact of
different masking ratios for CRFR-P masking on our pre-
training framework. As shown in Tab. 6, FSFM achieves the
best overall performance with a 0.75 masking ratio. Adopt-
ing lower masking ratios leads to trivial reconstruction and
alignment tasks due to more available information. Con-
versely, using a higher masking ratio makes pretext tasks
too challenging to learn sufficient facial representations for



Deepfake Detection  Face Anti-spoofing

Component Setting FAUCT VAAUCT HIER] AUCT
035 7392 7956 1584  90.02
Masking 0.50 7431 7948 2157 84.00
e 0.65 7492 8013 1776  81.37
075 7639 8231 1744 $8.26
0.85 7540 8083 1919 8613

Pretraining model Size

ViT-S/16(22M) 74.80 80.20 19.32 89.13
ViT-B/16(86M) 76.39 8231 17.44 88.26
ViT-L/16(303M)  77.43 83.15 16.23 93.13

Model size
(parameters)

Table 6. Ablations on deepfake detection (DfD) and face anti-
spoofing (FAS) with average metrics. The model is pretrained on
FF++_o [40]. Default settings are shaded in gray.
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Figure 5. Ablations of loss weights on deepfake detection (DfD)
with average metrics. The model is pretrained on FF++_o [40].
Default: Ap. = 0.007, Ay = 0.1.

(a) MAE (b) MAE (c) FSFM

CRFR-P masking CRFR-P&our ID

Original Masked 75% random masking

Figure 6. Reconstruction Visualization of real face images with
a masking ratio of 75%, using MIM models pretrained from: (a)
a naive MAE with simple random masking [23], (b) a naive MAE
with our CRFR-P masking, and (c) our FSFM. All models were
pretrained on the train and validation sets of FF++_o [40] without
adversarial learning, for 400 epochs. Images are from the test set.

downstream face security tasks. Accordingly, we select a
75% masking ratio as the default setting.

Effect of Model Scaling Tab. 6 also shows that FSFM ben-
efits from larger model sizes when pretrained on FF++_o.
The transfer performance on downstream face security tasks
improves as the model scales up. Due to limited comput-
ing resources, we were unable to pretrain larger models on

T

) (b) Face Anti-Spoofing

‘(a) Deepfake Detection

Figure 7. CAM Visualization. (a) DfD on various manipulations
from FF++ [40]. (b) FAS on the MCIO protocol. FSFM highlights
forgery artifacts and spoof clues. Images are from the test set.

more face images, e.g., pertaining ViT-L/16(303M) on the
full VGGFace?2 dataset, but we aspire to explore this in fu-
ture work and update model zoos accordingly.

Effect of Loss Weight To explore the impact of the re-
construction and distillation losses, we vary various loss
weights, i.e. Ap. and .. Results in Fig. 5 show that the
configuration (Ag. = 0.007, A, = 0.1) performs better on
challenging cross-dataset DfD.

F.2. Visualizations

Reconstruction To demonstrate the superiority of the fa-
cial representations pretrained with FSFM, we further fol-
low MAE [23] to visualize reconstruction results, as shown
in Fig. 6. We can see that FSFM demonstrates better recon-
struction quality concerning intra-region consistency (pre-
serving fine-grained textures within facial regions), inter-
region coherency (maintaining spatial relationships across
regions), and local-to-global correspondence (aligning lo-
cal appearance with global facial looking).

CAM We provide additional CAM visualizations in Fig. 7,
which are consistent with the observations in the main pa-
per, further substantiating the effectiveness of our method.

G. Limitations

Despite the promising results demonstrated by FSFM
across various face security tasks, our work has several
limitations that warrant further exploration: Pretraining
Dataset Bias FSFM is pretrained on large-scale facial im-
ages, and its performance can be affected by the quantity,
diversity, and quality of the pretraining data. Pretrain-
ing on specific datasets like VGGFace2 [4] may inherit
their biases (e.g., race, ethnicity, and age), potentially
reducing fairness. Absence of Multi-modal Learning
Since our work focuses on general visual face security,
the current framework processes only image or frame
data for downstream forgery&spoofing image&video
detection, ignoring potential complementary signals (e.g.,
audio inconsistencies in deepfakes or physiological cues
in spoofing), which could further enhance capabilities.
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