
Table A1. Architecture of Vallina AlexNet

Layer Details

1 Conv2d(3, 64, 11, 4, 2), BN(64), ReLU, MaxPool2D(3,2)

2 Conv2d(64, 192, 5, 1, 2), BN(192), ReLU, MaxPool2D(3,2)

3 Conv2d(192, 384, 3, 1, 1), BN(384), ReLU

4 Conv2d(384, 256, 3, 1, 1), BN(256), ReLU

5 Conv2d(256, 256, 3, 1, 1), BN(256), ReLU, MaxPool2D(3,2)

6 AdaptiveAvgPool2D(6, 6)

7 FC(9216, 1024), BN(1024), ReLU

8 FC(1024, 1024), BN(1024), ReLU

9 FC(1024, num classes)

A1. Experimental Details

A1.1. Datasets
We use three popular datasets of multi-domain image clas-
sification tasks: Office-Caltech10 [17], DomainNet [6], and
PACS [19]. The details of the three datasets are as below

Office-Caltech10. Office-Caltech10 is constructed by se-
lecting the 10 overlapping categories (e.g., backpack, bike,
calculator, headphones, keyboard, laptop, monitor, mouse,
mug and projector) between the Office dataset [16] and
Caltech256 dataset [3]. It contains four different domains:
amazon, caltech10, dslr and webcam. These domains con-
tain respectively 958, 1123, 295, and 157 images.

DomainNet. We follow [20] to select 10 categories from
the 345 categories of objects of the original dataset. The do-
mains of this dataset include clipart, real, sketch, infograph,
painting, and quickdraw.

PACS. PACS [7] consists of four domains, namely Photo
(1,670 images), Art Painting (2,048 images), Cartoon
(2,344 images) and Sketch (3,929 images). Each domain
contains seven categories.

We follow [20] to allocate each single domain’s data to
a client in our experiments. The visualized examples of the
three datasets are respectively shown in Figure A1 (a), (b),
and (c). We resize each sample into the size of 224 × 224
before feeding them into the model. We split each client’s
local data into training/validation/testing datasets by the ra-
tios 0.8/0.1/0.1. The model is trained on training datasets
and is selected according to its optimal performance on val-
idation datasets. We finally report the metrics of the selected
optimal model on each client’s testing data.

A1.2. Model Architecture
Backbone. We follow [20] to use AlexNet across our ex-
periments. The architecture of the model is as shown in

Table A2. Architecture of FDSE’s AlexNet

Layer Details

1 DSEBlock(3, 64, 11, 4, 2, G=2, dw=3), MaxPool2D(3, 2)

2 DSEBlock(64, 192, 5, 1, 2, G=2, dw=3), MaxPool2D(3, 2)

3 DSEBlock(192, 384, 3, 1, 1, G=2, dw=3)

4 DSEBlock(384, 256, 3, 1, 1, G=2, dw=3)

5 DSEBlock(256, 256, 3, 1, 1, G=2, dw=3), MaxPool2D(3, 2)

6 AdaptiveAvgPool2D(6, 6)

7 DSEBlock(9216, 1024, 1, 1, 1, G=2, dw=1)

8 DSEBlock(1024, 1024, 1, 1, 1, G=2, dw=1)

9 FC(1024, num classes)

Table A3. Architecture of DSEBlock(S,T,kernel size, stride,
padding, G, dw)

Layer Details

1 Conv2d(S, ⌈T/G⌉, kernel size, stride, padding),BNDSE(⌈T/G⌉),ReLU

2 Conv2d(⌈T/G⌉, T-⌈T/G⌉, dw, 1, dw//2)

3 Concat(outlayer1,outlayer2)

4 BNDFE(T), ReLU

Table A1. The model used by FedFA has a similar archi-
tecture with Vallina AlexNet where the first five layers are
respectively attached with an additional FFALayer. FDSE
replaces each layer in the Vallina AlexNet with a DSEBlock
as is shown in Table A1, and the details of each DSEBlock
are listed in Table A3. Particularly, we follow [4] to pre-
serve one identity mapping in the DSE convolution (e.g.,
layer 2).

A1.3. Baselines
We consider the following baselines in this work
• Local is a non-federated method where each client inde-

pendently trains its local model;
• FedAvg [14] is the classical FL method that iteratively

averages the locally trained models to update the global
model;

• LG-FedAvg[12] is a method that jointly learns compact
local representations on each device and a global model
across all devices.

• FedProx[9] restricts the model parameters to be close to
the global ones during clients’ local training to alleviate
the negative impact of data heterogeneity.

• Scaffold[5] corrects the model updating directions during
model training to mitigate client drift’s effects.

• FedDyn[1] maintains consistent local and global objec-
tives during model training to avoid model overfitting on
local objectives.

• MOON[8] restricts the model’s representation space to
be close to the global ones during clients’ local training.

• Ditto [10] personalizes the local model by limiting its dis-
tance to the global model for each client with a proximal



Figure A1. The visualization of each client’s local data.

Algorithm 1 FedBN-Adaption
Input:The trained model M, the target domain’s testing
data Dtarget

1: for batch data (X, y) ∈ Dtarget do
2: the target client collects local statistics by computing

M(X)
3: end for
4: return M

term.
• PartialFed[17] personalizes partial model parameters to

suit the global model to local distributions.
• FedBN[11] lets BN layers be locally kept by each client

without aggregation to adapt the global model to their lo-
cal datasets.

• FedFA[20] augments features in the intermediate layers
of the model to enhance clients’ consensus from the fea-
ture level.

• FedHeal[2] mitigates gradient conflicts of important
model parameters to enhance clients’ consensus from the
model parameter level.

A1.4. Hyper-parameters
Common parameters. We respectively tune the learning
rate η ∈ {0.001, 0.01, 0.05, 0.1, 0.5} by grid search for
each method. We clip the gradient’s norm to be no larger
than 10. We run each trial for 500 communication rounds.
The batch size is fixed to 50 and the local epochs for Do-
mainnet, Office-Caltech10, and PACS are respectively 5,
1, and 5. We decay the learning rate by the ratio 0.998
per round. We select all the clients at each communication
round like other works in cross-silo FL [13].

Algorithmic parameters. For Ditto [10] and Fed-
Prox [9], we tune the regularization coefficient µ ∈
[0.0001, 0.001, 0.01, 0.1, 1.0]. For MOON [8], we fol-

Algorithm 2 FDSE-Adaption
Input:The trained model M, the target domain’s testing
data Dtarget, the number of epochs E, the learning rate
η

1: the target client freezes the gradient of trainable param-
eters θu in M if θu does not belong to any DSE mod-
ules and fixes all the statistical parameters of BNDFE.

2: for epoch i = 1, ..., E do
3: for batch data (X, y) ∈ Dtarget do
4: the target client computes model forward M(X)
5: the target client hook DSE module’s outputs

{X(l)
k }

6: the target client compute regularization term in
Sec. 4.2

7: the target client optimizes the non-frozen parame-
ters to minimize the regularization term via gradi-
ent descent with step size η.

8: end for
9: end for

10: return M

low its setting to set the range of the coefficient µ as
[0.1, 1.0, 5.0, 10.0] and fix the value of τ = 0.5. For Fed-
Dyn [1], we tune the regularization coefficient alpha ∈
[0.001, 0.01, 0.03, 0.1]. For FedHeal, we tune the τ ∈
[0.1, 0.2, 0.3, 0.4, 0.5]. For FDSE, we fix β = 0.001 and
only tune λ ∈ [0.01, 0.1, 1.0], τ ∈ [0.001, 0.01, 0.1, 0.5].

A1.5. Adapation Details

We illustrate the details of model adaptation for each
method in Sec. 5.4. For FedAvg, we directly use the
global model to make predictions on the target domain. For
FedBN, we first collect local statistics for 1 epoch on the tar-
get domain’s testing dataset and then evaluate the adapted
model, as is shown in Algo. 1. For FDSE, we fine-tune



Figure A2. Testing loss curves on other model architectures.

Table A4. Model performance (↑) on other model architectures.

Method DomainNet-ResNet50 PACS-ViT-B/8
ALL AVG ALL AVG

FedAvg 59.90±0.96 58.71±1.06 26.44±4.16 25.94±4.46

FedHeal 66.16±0.62 64.52±0.55 30.05±3.44 29.51±2.98

FedBN 69.36±0.29 66.99±0.53 36.67±2.01 36.22±2.86

Ditto 67.70±0.36 64.99±0.49 31.96±4.32 31.75±4.13

FDSE 72.98±0.39 70.44±0.32 38.24±1.69 38.41±1.90

Table A5. Model performance (↑) on unseen clients.

Dataset FedAvg FedBN FedDG-GA FedSR FDSE

O
ffi

ce

C 51.78 60.71 55.35 56.25 57.14
A 70.52 70.52 72.63 75.78 75.78
D 80.00 80.00 86.66 86.66 93.33
W 65.61 55.17 68.96 69.32 75.86
avg 66.95 66.60 70.90 72.00 75.52

D
om

ai
nN

et

C 62.81 62.56 62.43 60.75 65.22
I 30.15 31.14 30.70 31.81 32.34
P 55.53 57.26 57.04 56.18 59.32
O 48.86 53.06 48.26 52.13 55.00
R 59.74 63.17 59.85 64.15 64.28
S 58.92 62.46 58.92 58.55 65.28

avg 52.66 54.94 52.87 53.92 56.91

the DSE modules and fix other parameters to minimize the
consistency regularization (e.g., Sec. 4.2) for several epochs
before evaluation as shown in Algo. 2.

A2. Additional Experiments
A2.1. Other Model Architecture
We have studied the effectiveness on relatively large mod-
els in Table A4. We replace the last operator of each layer
(i.e., ResNet50’s block and Vit-B/8’s feedforward layer)
with DSE module. FDSE consistently outperforms base-
lines (e.g., Table A4) and exhibits faster convergence speed
(e.g., Figure A2).

A2.2. Additional Baselines of generalizabilityy
We compare FDSE with the additional baselines [15, 18] for
unseen clients in Table A5. FDSE outperforms all baselines,
which we attribute to the additional adaptation steps.
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