Flash-Split: 2D Reflection Removal with Flash Cues and
Latent Diffusion Separation

Supplementary Material

In this supplementary material, we evaluate an additional
flash/no-flash baseline [6] on real scenes (Sec. 8), demon-
strate the respective roles of the two stages of our method
(latent separation and cross-latent decoding) (Sec. 9), ana-
lyze our method’s robustness to misalignment (Sec. 10), re-
port baseline’s performance on flash images (Sec. 11), and
provide more training and inference details (Sec. 12).

8. Additional Flash/No-Flash-Based Baseline

In our main paper we compared our results with a flash/no-
flash baseline Lei et al. [31], this is the most recent method
on flash/no-flash based reflection separation method. We
take Lei et al. [31]’s official code implementation from
GitHub for their method and use their pretrained network
checkpoints. However, as shown in Fig. 7, 8, 9, 10 of the
main paper, the reflection separation performance of Lei
et al. [31] are not satisfactory.

We additionally add another flash/no-flash baseline,
Chang et al. [6], which proposes a siamese dense network
(SDN) for reflection removal with flash and no-flash image
pairs. We also use their official implementation plus their
pretrained checkpoints. We evaluated this method using
the same scenes shown in the main paper. The results are
shown in Fig. 17,18,19,20. These four scenes correspond
to Fig. 7.8,9,10 of the main paper. While Chang et al. [7]
outperforms Lei et al. [31] on real data, it still does not fully
separate the transmission component from the input flash
and no-flash images. Our method still achieves much better
reflection separation performance.

9. Respective Roles of Our 2-Stage Separation

As mentioned in our main paper, we decouple the reflection
separation problem into two consecutive stages: (1) iter-
ative latent diffusion separation and (2) cross-latent decod-
ing. More specifically, in Stage 1, we iteratively separate the
reflection and transmission within the latent space; in Stage
2, we restore fine image details to the separated latents while
keeping the reconstruction faithful to the original scene, by
using separated latent from Stage 1 as guidance to extract
the sharp image features from the unseparated input image.

The respective effects of the two stages are shown in
Fig. 14 and 15. To visualize the intermediate results af-
ter Stage 1 (iterative latent diffusion separation), we decode
the separated transmission/reflection latents using a vanilla
decoder [43]. We can clearly see that the iterative latent dif-
fusion separation in Stage 1 already performs a good separa-
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Figure 14. Stage 1 for Separation; Stage 2 for Enhancement.
We visualize the intermediate results from our Iterative Latent Dif-
fusion Separation in Stage I (middle column) and the final results
from our Cross-latent Decoding in Stage 2 (right column). Stage
1 of our method performs good separation, and Stage 2 enhances
the details while avoiding hallucinations. Note that in our method,
Stage 1 only outputs the separated transmission/reflection latents,
but in this figure, for the purpose of visualization, we decode the
separated latents using a vanilla decoder from [43]. Additionally,
note that the zoom-in texts (“eraser”’) shown in the top half of this
figure have been flipped vertically for better readability.

tion of reflection and transmission. However, these interme-
diate results still suffer from hallucinations and blurriness,
due to the under-determinedness of the decoding process.
In Stage 2, our cross-latent decoding significantly improves
the sharpness and faithfulness of the reconstructed images
by leveraging the high-frequency details contained in the
original input images.

In summary, Stage 1 separates the transmission and re-
flection, while Stage 2 enhances the details.
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Figure 15. Stage 1 for Separates; Stage 2 for Enhancement.
Same experiment as Fig. 14, but on a new scene. Stage 1 of our
method perform good separation, and Stage 2 enhances the details
while avoiding hallucinations. Note that the two small white trian-
gles in the zoomed-in regions of the captured composite no-flash
image (lower left corner) are from the transmitted scene, which
aligns with our model’s prediction.

10. Robustness Against Misalignment

To better understand our model’s robustness to more severe
misalignment, we intentionally increase the amount of mis-
alignment between the captured flash and no-flash images,
to a degree where our method fails. Fig. 16 shows that our
method performs robustly against small to moderate camera
motion (e.g., hand shake) ; however, in the case of extreme
camera motion, (e.g., if the user is running or biking while
capturing the flash/no-flash pair), our method might fail.

11. Software-based Methods Using Flash Im-
age

The goal of this section is to show that our method performs
better not because we use a camera flash, but rather because
we use the cues from the flash/no-flash difference.

In our main paper, we visually compared our method
with various software-based reflection removal methods. In
those comparisons, we fed the no-flash images as inputs
to the software-based methods. The rationale behind this
choice is that these methods were trained on no-flash im-
ages, making the no-flash inputs in our real image evalua-
tion more representative of their training distribution. Con-
sequently, we believe that this approach provides a fair
baseline for comparison.

However, one could argue that the flash images, which
exhibit a stronger transmission component, might provide

an advantage for software-based methods to better separate
out the transmissions. To address this potential concern, we
additionally run software-only baselines on the same scenes
shown in the main paper, but using the flash images as in-
puts. The results are shown in Fig. 17,18, 19, 20. These
four scenes correspond to Fig. 7.8,9,10 of the main paper.
In this case, our method still achieves much better reflec-
tion separation performance compared to software-based
methods, which implies that, compared to the software-
based methods, our method’s superiority does not come
from flash, but rather, comes from the flash/no-flash cues.

12. Additional Training and Inference Details

In this section, we provide additional details on the training
and inference procedures for Stage 1 latent separation and
Stage 2 cross-latent decoding. At a high level, our proposed
pipeline is introduced in Fig. 5 and Sec. 3.3 of the main

paper.
12.1. Training

Stage 1 Latent Separation. During Stage 1 latent separa-
tion training, we convert the flash and no-flash images to
the latent space using the vanilla encoder from [43], and
concatenate them in the latent channel dimension to form
an input latent image z. We then take the target ground
truth transmission/reflection images and encode them into
ground truth image latents sg. Now, we sample a noise im-
age latent € with the same dimension as the ground truth
image latent. We then add the noise image to the ground
truth image latent using a random noise level ¢:

— Vaso+ (VI—ar)e (4)

Here {a:},t € {1,...,T} is the noise schedule specific to
the diffusion model. We use the default DDPM [17] sched-
uler of the Stable Diffusion 2.1 model [43] with T' = 1000
steps for training. We also use the annealed multi-resolution
noise [23] instead of standard Gaussian noise [17].

Our UNet then takes the input latents from the flash/no-
flash input images (z) and noised ground truth latents (s;)
from the ground truth transmission/reflection images and
predicts a noise €. Our training objective is to minimize
the L2 loss between the injected noise € and the noise pre-
dicted by the UNet é. Note that the ground truth transmis-
sion/reflection images are only used for training, and not
used for inference (see Sec. 12.2 for details).

We use the exact simulated and real datasets as proposed
in Lei et al. [31], which contains sets of flash/no-flash
pairs and corresponding ground truth transmission and
reflection images. The input images are randomly cropped
to 384 x 384 sized patches for training. To simulate
misaligned flash/no-flash image pairs, we follow Lei
et al. [31] and keep the no-flash images intact and do a
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Figure 16. Our Method’s Robustness to Different Degrees of Misalignment. While our model effectively handles misaligned flash
and no-flash images due to handshake, we intentionally further increase the flash/no-flash misalignment to find out when will our model
fail. Note that we assume the scene to be static and the misalignment comes from camera motion. The results show our method’s
robustness against estimated misalignment of 2 and 5 centimeters, respectively. However, when the misalignment exceeds 10 centimeters,
our method’s performance deteriorates. This shows that our method performs robustly against small to moderate camera motion (e.g.,
hand shake) while baselines completely fail; however, in the case of very severe camera motion, (e.g., if the user is running or biking while

capturing the flash/no-flash pair), our method might fail.

monocular-depth-guided image misalignment to generate a
misaligned flash image.

Stage 2 Cross-Latent Decoder. Our cross-latent decoder is
trained to learn a mapping from the latents separated by our
Stage 1 (iterative latent diffusion separation) to the ground
truth transmission/reflection images, using unseparated in-
put images as guidance.

The architecture of our cross-latent decoder is modified
from the pre-trained VAE component in [43] by adding skip
connections with zero convolutions. We trained separate
cross-latent decoders for reflection and transmission. For
transmission, we use the input flash image as the compos-
ite image, since the flash image contains a higher propor-
tion of transmission compared to the no-flash image. Con-
versely, for reflection, we use the input no-flash image as
the composite image, since the no-flash image contains a

higher proportion of reflection compared to the flash im-
age. Our cross-latent decoder takes in both the unseparated
input image and the separated latent from Stage 1 as in-
puts, and outputs a separated RGB image. We train the
model by minimizing the difference between the decoded
and the ground truth transmission/reflection image. We use
an equally weighted sum of L1, SSIM [4], and LPIPS [66]
losses to supervise the training. We take the separated trans-
mission/reflection latents from Stage 1 and group them with
the ground truth transmission/reflection, as well as the in-
put flash/no-flash images to form our Stage 2 training data.
Specifically, we take the misaligned training images crops
with size 384 x 384 from Lei et al. [31] as the input and run
inference on our trained Stage 1 model for 20 DDIM [46]
denoise iterations. See Sec. 12.2 on Stage 1 inference for
more details.
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Figure 17. Real Experiment: The Lab Scene. We compare with an additional flash/no-flash-based baseline Chang et al. [7]. Chang et al.
[7] can only predict the transmission, not the reflection, thus the “N/A”. Although Chang et al. [7] achieves better results than Lei et al. [31]
on the real data, it still cannot completely separate the transmission component from the input flash/no-flash images. The software-based
results shown in the real experiment are obtained using the no-flash image as the input. This figure provides additional results to Fig. 7 of

the main paper.
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Figure 18. Real Experiment: The Poster Scene. We compare with an additional flash/no-flash-based baseline Chang et al. [7]. Chang
et al. [7] can only predict the transmission, not the reflection, thus the “N/A”. Although Chang et al. [7] achieves better results than Lei et al.
[31] on the real data, it still cannot completely separate the transmission component from the input flash/no-flash images. We circle the
areas where Chang et al. [7] did not correctly separate the door in the reflection. The software-based results shown in the real experiment
are obtained using the no-flash image as the input. This figure provides additional results to Fig. 8 of the main paper.

12.2. Inference

After training, our diffusion model can be used to recover
transmission/reflection images from any flash no-flash pair.
We convert the flash and no-flash images to the latent space
using the vanilla encoder from [43], and concatenate them
in the latent channel dimension to obtain the input la-
tent image z. Our output prediction latent for transmis-
sion/reflection s is initialized from random Gaussian noise.
We iteratively denoise the separated reflection/transmission
images using our trained dual-branch UNet under the guid-
ance of input flash/no-flash images. At each denoising iter-
ation, we concatenate the input and output prediction latent
images and feed them to the UNet. We then update the pre-

diction latent based on the predicted noise of our UNet and
the current time step.

si_1 = DDIM (s, é,1) )

Here ¢ is the denoising timestep for the current iteration.
This denoising timestep corresponds to the amount of noise
contained in the output latent and decreases with every sub-
sequent denoising iteration. s; is the output separated trans-
mission/reflection image at timestep ¢, €; is the noise pre-
dicted by the UNet at timestep ¢, and s;_1 is the output
separated transmission/reflection latent image at the next
timestep ¢ — 1 ready for the next iteration. We use the
DDIM [46] scheduler for inference, which uses skipping
step updates to enable fewer denoising iterations and faster
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Figure 19. Real experiment: the Office Scene. We compare with an additional flash/no-flash-based baseline Chang et al. [7]. Chang et al.
[7] can only predict the transmission, not the reflection, thus the “N/A”. Although Chang et al. [7] achieves better results than Lei et al. [31]
on the real data, it still cannot completely separate the transmission component from the input flash/no-flash images. The software-based
results shown in the real experiment are obtained using the no-flash image as the input. This figure provides additional results to Fig. 9 of

the main paper.
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Figure 20. Real experiment: the Outdoor Scene. Chang et al. [7] can only predict the transmission, not the reflection, thus the “N/A”.
Although Chang et al. [7] achieves better results than Lei et al. [31] on the real data, it still cannot completely separate the transmission
component from the input flash/no-flash images. The software-based results shown in the real experiment are obtained using the no-flash
image as the input. This figure provides additional results to Fig. 10 of the main paper.

inference. We use 50 denoising iterations for inference.

Inference continues to Stage 2 where we take the sep-
arated transmission/reflection latent outputs from Stage 1
and feed them to the decoder of their respective cross-latent
decoders. Finally, the Stage 2 cross-latent decoders output
the refined transmission/reflection RGB images.

13. Additional Results for Analysis of Latent
Diffusion Separation

We show additional results from real world scenes in [61]
for the VAE and pretraining analysis in Sec. 4 of the main
paper. We can again see that the model using VAE trained
from scratch (Fig. 21e) achieves almost comparable perfor-

mance to the model using pretrained SD (Fig. 21f), despite
some minor artifacts. Notably, this model still performs bet-
ter than the flash/no-flash baseline method [31] (Fig. 21b).
On the other hand, the models without the VAE (Fig. 21c
& d) cannot effectively separate the reflection. These find-
ings further support our main paper’s analysis (Section 4),
emphasizing that the effectiveness of latent diffusion-based
separation significantly contributes to the overall success of
our method.

14. Additional Ablations on Pretraining

In this section we augment our analysis in Sec. 4 of the main
paper by showing further ablation studies on the effect of
the pretrained diffusion model on our method.
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Figure 21. Additional Real World Results for the VAE and Pretraining analysis. We show further comparisons on additional real world
scenes from [61] between models in our VAE and pretraining analysis in Sec. 4 of the main paper. Real experiment results show that the
VAE is important for effective reflection separation. Notably, the model using VAE trained from scratch (d) achieves almost comparable
performance to the model using pretrained Stable Diffusion (SD) [43] (e), despite some minor artifacts, while outperforming the flash/no-

flash baseline (b) [31].

PSNR+ SSIM{ LPIPS |

Stable Diffusion v1.1 31.75 0.964 0.048
Stable Diffusion v1.4 31.58 0.964 0.049
Stable Diffusion v2 31.61 0.963 0.048
Stable Diffusion v2.1 31.84 0.963 0.047

Table 2. Quantitative Comparison of Transmission Predic-
tion With Different Pretrained Base Diffusion Models. We
trained variants of our model using different pretrained Stable Dif-
fusion (SD) [43] versions without the inter-branch cross attention.
Newer versions of the SD model are additionally trained on top of
older models and therefore should contain more prior information.
However, quantitative results on the real dataset of [31] indicate
that performance remains similar when using the legacy models
(v1.1 and v1.4) compared to the newer v2 and v2.1 versions.

14.1. Ablation on the Pretrained Model Versions

To study the effect of pretraining, we analyzed how start-
ing from different pretrained Stable Diffusion (SD) versions
influence our model’s performance. Newer SD versions
(v2 and v2.1) are trained on older models and use higher-
resolution image data, suggesting that they incorporate ad-
ditional prior knowledge. However, training our method
with various SD versions yielded largely consistent results
(Tab. 2). Qualitative results on real-world data from [61]
also revealed near-identical outcomes (Fig. 22), indicating
that the better generative capabilities of newer SD models
do not necessarily enhance reflection separation. We be-
lieve this supports our conclusion from Sec. 4 of the main
paper that latent diffusion separation, rather than pretrain-
ing, drives our method’s success.

“a cute bunny on
green grass,
realistic, high
quality”

Generated from SD v1.1

Input Text Prompt Generated from SD v2

Input Composite Img

Model Tralned from SD v1.1 Model Tralned from SD v2

Figure 22. Qualitative Comparison of Separation with Differ-
ent Stable Diffusion (SD) [43] Versions. While legacy SD ver-
sions (SD v1.1) are less capable of text-to-image generation com-
pared to newer models (SD v2), when repurposed for reflection
separation using our method, both models produce near-identical
reconstructions.

14.2. Ablation on Pretrained Model by Partially
Freezing Pretrained Weights

We conduct an additional ablation study on the effect of
pretraining, where we freeze components of the pretrained
Stable Diffusion v2 [43] UNet and apply our method. To
purely test the performance of the diffusion UNet, all of
our models are trained without inter-branch cross-attention.
We show quantitative results in Tab. 3 testing on the real
dataset of [31]. Only freezing the midblock achieves the
best closest performance compared to fine-tuning the full
UNet. In contrast, freezing the upblocks leads to the largest
performance degradation, highlighting that UNet upsamp-
ing layers play a critical role in refining detailed spatial and



PSNRT SSIM1 LPIPS |

Full UNet 31.61 0.963 0.048
Frozen Downblocks 30.92 0.955 0.057
Frozen Midblock 31.42 0.960 0.050
Frozen Upblocks 30.02 0.947 0.062

Table 3. Quantitative Comparison of Transmission Predic-
tion when Freezing Weights of the Pretrained Stable DIffusion
UNet. We trained variants of our model starting from pretrained
Stable Diffusion v2 (SD v2) [43], selectively freezing different
components of the pretrained diffusion UNet. All of our mod-
els are trained without inter-branch cross-attention to purely test
the performance of the diffusion UNet. When testing on the real
dataset of [31]. Freezing the midblock achieves the closest perfor-
mance to fully fine-tuning the model, indicating midblock weights
are robust and require less adaptation, whereas freezing upblocks
results in the largest performance degradation, suggesting that de-
coder layers critically require fine-tuning for transmission predic-
tion.

structural outputs required specifically for transmission pre-
diction.
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Figure 23. Perpendicular Capture. We show a new scene where
the camera is in a car pointing outside, almost perpendicular to
the side window. Our model can still remove reflections. While
in theory, a perfectly perpendicular capture may cause flare, we
empirically found it very easy to circumvent by slightly adjusting
the viewpoint. In this case, our method(right) still archieves better
reflection removal comapred to the single image baseline [21].

In Sec. 3.1 of the main paper, we introduced that
flash/no-flash photography will work if the glass is not ex-
actly perpendicular to the camera viewing direction. In this
case, the flash illumination reflects away from the camera
sensor upon hitting the reflective surface, thereby prevent-
ing lens flare from appearing on the captured image. In
practice, we found that this condition is easy to fulfill. As
we show in Fig. 23, even in the case where the camera is al-
most perpendicular to the window, the captured image will
not have flare and our method can remove reflections ef-
fectively. While the flash illumination will cause secondary
reflections (e.g., light that hits the glass, bounces to the re-
flected scene, and then gets reflected elsewhere), we rarely
observe secondary reflections in practice. Therefore, it is
reasonable to assume that there are minimal changes to the
intensity of the reflected scene.
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