
FlowRAM: Grounding Flow Matching Policy with Region-Aware Mamba
Framework for Robotic Manipulation

Supplementary Material

In this supplementary material, we provide additional
details and experiments not included in the main paper due
to space limitations.

A. RLBench Tasks and Training Pipeline
A.1 Details of RLBench Tasks
We present two experimental settings employed in our
work. The first involves 10 tasks from RLBench [29], sum-
marized in Tab. A and visualized in Fig. A. Each task en-
compasses at least two or more variations to evaluate the
multi-task capabilities of the agent. Notably, due to the
templated nature of the instructions, which vary with each
variation, the agent learns a language-guided multi-task pol-
icy, rather than learning one-off policies for single variation
tasks [59]. Additionally, we evaluate FlowRAM on high-
precision tasks by selecting representative tasks from the
RLBench benchmark based on [24].

Task # Variation # Keyframe Instruction Template

Close Jar color(20) 6.0 ‘close the jar’
Open Drawer placement(3) 3.0 ‘open the drawer’
Sweep to Dustpan size(2) 4.6 ‘sweep dirt to dustpan’
Meat off Grill object(2) 5.0 ‘take the off the grill’
Turn Tap placement(2) 2.0 ‘turn tap’
Slide Block color(4) 4.7 ‘slide the block to target’
Put in Drawer placement(3) 12.0 ‘put the item in the drawer’
Drag Stick color(20) 6.0 ‘use stick to drag cube onto the target’
Put Buttons color(50) 3.8 ‘push the button’
Stack Blocks color, count(60) 14.6 ‘stack to blocks’

Table A. single-view setting Tasks. We introduce variations of
these tasks, the number of keyframes and instructions template.

A.2 Details of Training Pipeline
To facilitate policy learning, we uniformly sample a set of
expert episodes across all task variations. From these sam-
pled episodes, we randomly select input-action pairs for
each task to construct a training batch. Similar to previ-
ous work [19, 21, 24, 59], the agent is assumed to use a
sampling-based motion planner, which helps define input-
action pairs as keyframes, as described in Sec. 3.2. This
setup simplifies the original sequential decision-making
problem into predicting the next optimal keyframe action
based on the current observation.

B. Details of FlowRAM
The hyperparameters used in FlowRAM are shown in
Tab. B. Specifically, apos ∈ R3, we use a 6D rotation rep-
resentation to avoid the inherent discontinuities of quater-

Hyperparameter Value

Training
batch size 320

training iteration 300K
learning rate 1e−4

weight decay 5e−4

optimizer AdamW
EMA 0.9999

gradient moment (0.9, 0.999)
loss weight : LCFM 100
loss weight : Lopen 10

Model
image resolution 128 × 128

embedding dim C 120
noise scheduler EulerDiscrete

FlowMatching timestep 50
sampled semantic tokens N1 4096
sampled geometric tokens N2 1024

Mamba
d model 120
d state 16
d conv 4
expand 2

Table B. Hyper-parameters of FlowRAM.

nions, where arot ∈ R6. We apply a Flow Matching Discrete
Scheduler for adding noise to both the position apos and the
rotation arot. To provide a clear understanding of the flow
matching policy, we provide pseudocode for flow-based
model training Algorithm 1 and inference Algorithm 2.

C. Additional Experiment and Visualization
C.1 Additional Experiment
To further evaluate the proposed Dynamic Radius Schedule
(DRS), we analyze its effect over a few time steps, with
qualitative results presented in Tab. C.

i-steps 2 4 8 16 32

CFM 70.5 73.6 74.0 74.6 76.5 Avg. Sucess
w/o DRS 60.7 94.3 143.1 252.0 499.7 Inference Time

CFM 74.2 77.8 78.6 79.3 81.1 Avg. Sucess
w DRS 57.7 91.0 139.7 248.5 496.3 Inference Time

Table C. Ablation study about the DRS in few timesteps. Note:
If DRS is not used, it means that the global point cloud is down-
sampled to extract geometric features.

The incorporation of DRS consistently enhances the suc-
cess rate of the model across all time steps. For exam-
ple, at i = 2, the success rate improves from 70.5% (w/o
DRS) to 74.2% (w/ DRS), and at i = 32, from 76.5% to



Close Jar Open Drawer

Slide Block Put in Drawer Drag Stick

Meat off Grill
Sweep to 

Dustpan

Put Buttons Stack Blocks

Turn Tap

Figure A. Additional Task Visualization.We visualize all tasks in the single-view setting.

81.1%, confirming that DRS contributes to higher accuracy
and robustness, especially at larger inference steps, while
also reducing inference time. The results demonstrate that
in robotic manipulation tasks, leveraging local information
significantly enhances task success rates. The DRS mecha-
nism dynamically adjusts the radius, enabling the model to
focus on task-relevant regions efficiently while minimizing
redundant global computations.

Algorithm 1: Conditional Flow Matching Policy
Training in Euclidean Space

Require: Dataset ζ = {o, a}, Instructions l, Observations
o, Conditions C = {o, l}, Actions a = {apos, arot}

1: repeat
2: a1,o ∼ ζ # Sample a random input-action pair

from the dataset
3: a0 ∼ N (0, 1) # Sample from a Gaussian

distribution
4: t ∼ Uniform{0, . . . , 1} # Sample a random time t
5: at ← t · a1 + (1− t) · a0 # Linear interpolation
6: u(at)← a1 − a0 # Compute target velocity Field
7: û(at)← vθ(at, t, C) # Predicted velocity Field
8: LCFM ← ∥u(at)− û(at)∥2 # Compute loss
9: θ ← θ − η∇θLCFM

10: until Converged

C.2 Flow Matching Generation process

Fig. B showcases the Flow Matching Generation process of
the trained FlowRAM agent in predicting the next keyframe
pose, where time step i is set to 50 for a clear depiction of
the Flow Matching Generation process. FlowRAM learns
accurate velocity fields across various tasks, which facili-
tates a more efficient flow matching generation process dur-
ing inference. (For better visualization, we eliminate some
of the noise inherent in the depth camera.)

Algorithm 2: Action Poses Generation based on
Conditional Flow Matching Policy

Require: Observation o, Number of steps ksteps,
condition C = {o, l}

1: a0 ∼ N (0, 1) # Sample from a Gaussian distribution
2: for k = 1 to ksteps do
3: t← k/ksteps # Compute time step
4: ∆t← 1/ksteps # Compute interval
5: P ← vθ(z, t, C) # Predict velocity
6: at ← a0 + P ·∆t # Update state
7: end for
8: return at

Noised Pose Target PoseCurrent Pose Flow Macthing Generation

Figure B. Examples of the next keyframe pose prediction using
FlowRAM. The first two rows represent high-precise and single-
view simulation tasks, while the third row corresponds to real-
world tasks.



Method
Avg.

Success↑
Push

Buttons
Slide
Block

Sweep to
Dustpan

Meat off
Grill

Turn
Tap

Put in
Drawer

Close
Jar

Drag
Stick

Put in
Safe

PerAct 49.4 92.8 ±3.0 74.0 ±13.0 52.0 ±0.0 70.4 ±2.0 88.0 ±4.4 51.2 ±4.7 55.2 ±4.7 89.6 ±4.1 86.0 ±3.2

3D Diffuser Actor 81.3 98.4 ±2.0 97.6 ±3.2 84.0 ±4.4 96.8 ±1.6 99.2 ±1.6 96.0 ±3.6 96.0 ±2.5 100.0 ±0.0 97.6 ±2.0

RVT-2 81.4 100.0 ±0.0 92.0 ±2.8 100.0 ±0.0 99.0 ±1.7 99.0 ±1.7 96.0 ±0.0 100.0 ±0.0 99.0 ±1.7 96.0 ±2.8

FlowRAM (ours) 84.9 100.0 ±0.0 100.0 ±0.0 92.0 ±2.0 94.0 ±2.0 100.0 ±0.0 92.0 ±0.0 96.0 ±2.0 100.0 ±0.0 96.0 ±0.0

Method
Place
Wine

Screw
Bulb

Open
Drawer

Stack
Blocks

Stack
Cups

Put in
Cupboard

Insert
Peg

Sort
Shape

Place
Cups

PerAct 44.8 ±7.8 17.6 ±2.0 88.0 ±5.7 26.4 ±3.9 2.4 ±2.2 28.0 ±4.4 5.6 ±4.1 16.8 ±4.7 2.4 ±3.2

3D Diffuser Actor 93.6 ±4.8 82.4 ±2.0 89.6 ±4.1 68.3 ±3.3 47.2 ±8.5 85.6 ±4.1 65.6 ±4.1 44.0 ±4.4 24.0 ±7.6

RVT-2 95.0 ±3.3 88.0 ±4.9 74.0 ±11.8 80.0 ±2.8 69.0 ±5.9 66.0 ±4.5 40.0 ±0.0 35.0 ±7.1 38.0 ±4.5

FlowRAM (ours) 96.0±0.0 84.0±2.3 92.0 ±0.0 77.3 ±3.8 61.0 ±2.0 86.0±4.0 72.0±2.7 48.0±4.0 42.0 ±2.3

Table D. Evaluation on RLBench with 100 demonstrations. We report the success rate for 18 RLBench tasks and the average success
rate across all the tasks. Additionaly, we show the mean and standard deviation of success rates (in %) average across three random seeds.
FlowRAM outperforms all prior arts on most tasks, especially for tasks that require high geometric understanding.

C.3 Multi-Modal Actions
Policies based on generative models allow the modeling of
multimodal action distributions [9], i.e., scenarios where
there are multiple valid actions given observations and in-
struction. Fig. C shows a typical example of FlowRAM in
multimodal action prediction. With multiple red blocks
to choose from, there is diversity in the poses of the next
keyframe. Therefore, during training, starting from the
noise distribution, FlowRAM effectively learns the multi-
modal distribution of keyframe actions by fitting the vec-
tor field along probabilistic flow paths. For inference, one
path is chosen for each noise sample and numerical integra-
tion is used to generate the end-effector pose for the next
keyframe.

Figure C. Multi-Modal Predictions.

D. Experiments on a major benchmark
We understand the importance of the 18-task benchmark
in RLBench for evaluating the generalization and robust-
ness of robotic learning algorithms. Therefore, we provide
a comprehensive analysis of the results, including success
rates, statistical significance, and insights into the perfor-
mance of FlowRAM. The success rates for each task, along
with the average success rate across all tasks, are summa-

rized in Sec. 5. FlowRAM demonstrated excellent perfor-
mance, consistently achieving high success rates across the
majority of tasks.

E. Failure cases and Limitations
E.1 Analysis of Failure cases
In the 17 simulation tasks, Put umbrella in Stand
task showed the poorest performance. Upon careful exam-
ination, we find that while FlowRAM is able to grasp the
umbrella handle reliably, two primary errors lead to failure
during the insertion process: (1) The umbrella is not cor-
rectly inserted into the stand, occurring in approximately
25% of cases; (2) Although the umbrella is successfully in-
serted into the stand and has detached from the gripper after
the two-finger gripper opens, due to a simulator bug, the
umbrella continues to follow the center point of the gripper
and is pulled out of the stand, occurring in approximately
55% of cases.

In Tab. 1, FlowRAM fails to achieve state-of-the-art per-
formance on the Sweep to Dustpan and Meat off
Grill tasks. Further analysis reveals that at an ear-
lier checkpoint (e.g., 150K training iterations), these tasks
achieved success rates of 96% and 92%, respectively, while
other tasks remained under-optimized. We hypothesize that
the reported results in Tab. 1 may reflect performance trade-
offs caused by a uniform task sampling strategy, where
equal sampling weights led to performance gains in some
tasks at the expense of others [21, 59].

E.2 Limitations
Although FlowRAM has demonstrated remarkable accu-
racy and scalability in both simulated and real-world scenar-
ios, it still faces challenges in balancing multi-task learning.
Future research could focus on exploring advanced strate-
gies for effectively optimizing multi-task learning while
maintaining high accuracy.


