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Supplementary Material

This Supplementary Material provides the following sec-
tions:
• Experimental setup (Sec. 8)
• Discussion about Using CLIP in GCD (Sec. 9)
• Additional experiments and analysis (Sec. 10)
• Pseudo-code (Sec. 11)
• Different pre-trained models (Sec. 12)
• Cluster results of GET (Sec. 13)
• Limitations and broader impact (Sec. 14)

8. Experimental setup

Datasets. We evaluate our method on multiple bench-
marks, including three image classification generic datasets
(i.e., CIFAR 10/100 [9] and ImageNet-100 [3]), three fine-
grained datasets from Semantic Shift Benchmark [18] (i.e.,
CUB [21], Stanford Cars [8] and FGVC-Aircraft [11]),
and three challenging datasets (i.e., Herbarium 19 [16],
ImageNet-R [6] and ImageNet-1K [3]). Notice that we are
the first to introduce ImageNet-R into the GCD task, which
contains various renditions of 200 ImageNet classes, thus
challenging the GCD’s assumption that the data comes from
the same domain. For ImageNet-R, we subsample the first
100 classes as old classes, leaving the rest as new classes;
the labeled dataset Dl consists of half of the old class sam-
ples, while the other half and all the new class samples are
used to construct unlabelled dataset Du. Furthermore, we
conduct experiments on the TV100 dataset [26], a TV se-
ries dataset that the pre-trained CLIP model has not been
exposed to. We use the first 50 classes as old categories and
the remaining 50 classes as new categories. As for other
benchmarks, we follow the previous [17, 23] to sample Dl

and Du. The details of the standard datasets we evaluate on
are shown in Tab. 8.

Labelled Unlabelled

Dataset Images Classes Images Classes

CIFAR10 [9] 12.5K 5 37.5K 10
CIFAR100 [9] 20.0K 80 30.0K 100
ImageNet-100 [3] 31.9K 50 95.3K 100
CUB [21] 1.5K 100 4.5K 200
Stanford Cars [8] 2.0K 98 6.1K 196
FGVC-Aircraft [11] 1.7K 50 5.0K 100
Herbarium 19 [16] 8.9K 341 25.4K 683
ImageNet-R [6] 7.7K 100 22.3K 200
ImageNet-1K [3] 321K 500 960K 1000

Table 8. The details of the standard datasets we evaluate on.

The NEV dataset As mentioned in the main paper, we
conduct a toy experiment to prove that our TES can deal
with a scenario where CLIP lacks information on a specific
category class. Since CLIP saw most of the visual con-
cepts and corresponding texts before 2022, we constructed a
small dataset of new energy vehicles (NEV) that appeared in
2023. As in Tab. 9, the NEV dataset contains 12 categories,
each with 50 images from the Internet, and the classnames
of the dataset consist of the brand and model of the car. We
split them in the same way as standard benchmarks.

Old classes New classes

BMW xDrive M60 Geely Jiyue 01
BYD Seagull Geely Zeeker X
BYD Song L Mercedes-Benz EQE SUV
BYD Yangwang U8 SAIC-Motor MG Cyberster
GAC-Motor Trumpchi ES9 SAIC-Motor Rising F7
Geely Galaxy E8 XPeng X9

Table 9. The class names for the NEV dataset.

Implementation details. We use a CLIP [14] pre-trained
ViT-B/16 [4] as the image and text encoder. In the first
stage, we train a fully connected layer to transfer image
embeddings into pseudo-tokens. In the second stage, the
projector of the image encoder is removed, resulting in fea-
tures with a dimension of 768. The exception is ImageNet-
1K, we remain and fine-tune the last projection layer, which
avoids gradient explosion and improves results with lower
computational cost, resulting in features with a dimension
of 512. We use a single linear layer to turn pseudo text
embeddings generated by TES into learnable embeddings
while changing their dimensions (512 to 768) to match
those of the visual features. The batch size is fixed to 128
for training and 256 for testing. Training is done with an
SGD optimizer and an initial learning rate of 0.1 decayed
by a cosine annealing rule. We train for 200 epochs on each
dataset in both two stages. In the first stage, we set the
number of pseudo text tokens to 7. The balance coefficient
λ is set to 0.35 as [17], and λc is set to 1. The temperature
value τa is set to 0.01 while other temperature values τsc,
τc, τs , τt and the balanced value ϵ are as same as [23]. The
augmentation exactly follows the previous, in which Ran-
domCrop creates two views. All experiments are conducted
with 4 NVIDIA GeForce RTX 3090 GPUs.

9. Discussion about Using CLIP in GCD
An evident fact is that using a more powerful backbone fa-
cilitates the transfer of knowledge learned from labeled data



Method Backbone
NCT-CRC-HE

All Old New

SimGCD DINO 77.1 79.9 75.1
SimGCD CLIP 79.1 93.2 69.2
GET (ours) CLIP 83.8 94.5 76.3

Table 10. Results on the medical dataset.

to unlabeled data [17, 19, 22, 23]. Due to the strong gener-
alization ability of CLIP, it can encode more discriminative
features, and its multi-modal information aids in discov-
ering new categories, making it a natural choice for intro-
ducing CLIP. As discussed in the main text, using CLIP in
GCD has three significances: methodological significance,
forward-looking significance, and practical implications.

We argue that the key to leveraging CLIP for GCD
lies in how to use its text encoder, given the presence of
unlabeled data in GCD tasks. In this section, we provide
supplementary analyses to complement the discussions in
the main text. To be specific, we validate the effectiveness
of our method and substantiate the incorporation of CLIP
into GCD by addressing the following questions:

1. Does the performance gain originate from the
CLIP (text encoder) being pre-exposed to the new cat-
egories?

In other words, we need to verify the effectiveness of
our method on categories that are unseen by CLIP. The ex-
perimental results on the NEV and TV-100 datasets (Tab.
7 in the main paper) demonstrate the effectiveness of our
method in scenarios where CLIP lacks prior information.

The intuition behind our TES can be explained from two
perspectives. First, our trained TES can be considered as
a special fine-tuned text encoder. This text encoder takes
visual images as input and produces corresponding textual
features as output. Our align loss ensures modal alignment,
while the distill loss facilitates the model’s adaptation to the
dataset’s distribution. Second, TES can be regarded as a
caption model [12]. For each input image, TES assigns a
corresponding caption, expressing each caption in the form
of modal-aligned text features. The text embeddings or cap-
tions corresponding to images can serve as valuable sup-
plementary information, assisting the GCD task in a multi-
modal manner.

2. In more realistic scenarios where class names (either
old or new) cannot be generated or retrieved, does our
method remain effective?

To address this concern, we first conducted GCD experi-
ments on a medical dataset: the NCT-CRC-HE dataset. The
NCT-CRC-HE [7] dataset comprises histological images of
human colorectal cancer, containing nine categories. We
selected the first five categories as the old classes. For the
medical dataset, generating or retrieving new class names
is challenging, its class names need expert knowledge. Our

SoyAgeing-R1 SoyAgeing-R3 SoyAgeing-R4

Method All Old New All Old New All Old New

SimGCD 37.3 48.4 31.7 32.7 47.2 25.5 35.4 46.4 29.9
GET (ours) 47.9 56.5 43.6 46.0 55.2 41.4 46.6 52.8 43.4

Table 11. Results on ultra-fine-grained datasets using CLIP back-
bone.
method directly generates text features aligned with visual
features, and the experimental results in Tab. 10 demon-
strate its effectiveness.

Moreover, in certain scenarios, it is also difficult to ob-
tain the class names of base categories. For example, in
ultra-fine-grained datasets [10, 24], different categories rep-
resent different types of soybean leaves. In such cases,
category discovery using CLIP becomes significantly more
challenging. To address this, we remove the distillation
loss in TES, allowing the use of CLIP’s text encoder even
when base class names are unavailable. Tab. 11 presents
the experimental results on three ultra-fine-grained datasets,
demonstrating the effectiveness of our approach. Mean-
while, the results in Tab. 5 of the main paper further demon-
strate the effectiveness of our TES in scenarios where the
class names of base categories are unavailable, by remov-
ing the distillation loss.

10. Additional Experiments and Analysis

The architecture of TES. In TES, we use a single linear
layer to transform the visual embedding to pseudo tokens
and set the number of pseudo text tokens to 7 across all
datasets. Experiment results on the architecture of TES for
the CUB dataset are presented in Fig. 5, proving that a sin-
gle linear layer can effectively transfer visual features into
text tokens while reducing the computational cost.
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Figure 5. Experiments on the pseudo-tokens and layers in TES.

Effectiveness of text embedding synthesizer. In order



CUB Stanford Cars FGVC-Aircraft CIFAR10 CIFAR100 ImageNet-100

Methods All Old New All Old New All Old New All Old New All Old New All Old New

PromptCAL [25] 62.9 64.4 62.1 50.2 70.1 40.6 52.2 52.2 52.3 97.9 96.6 98.5 81.2 84.2 75.3 83.1 92.7 78.3
PromptCAL-CLIP 65.5 68.7 63.9 74.0 80.8 70.8 54.5 61.8 51.0 88.7 96.5 84.8 80.5 82.4 76.8 87.4 93.6 84.3

GET (Ours) 77.0 78.1 76.4 78.5 86.8 74.5 58.9 59.6 58.5 97.2 94.6 98.5 82.1 85.5 75.5 91.7 95.7 89.7

Table 12. Results of PromptCAL-CLIP.

FGVC-Aircraft ImageNet-100 ImageNet-R

Method All Old New All Old New All Old New

GCD-CLIP 45.3 44.4 45.8 75.8 87.3 70.0 44.3 79.0 25.8
+TES 49.6 49.3 49.8 80.0 95.1 72.4 49.4 79.4 33.5

Table 13. Effectiveness of TES in non-parametric GCD.

to prove that our text embedding synthesizer can gener-
ate reliable and discriminative representations, we visualize
the text embeddings of CIFAR10 with t-SNE. As shown in
Fig. 6, the initial text embeddings within the same class ex-
hibit clear clustering, and the learnable embeddings further
produce compacter clusters. Moreover, we introduce TES
into the non-parametric GCD by straightforwardly concate-
nating text and image features before semi-supervised k-
means classification. As in Tab. 13, with the help of text
information, GCD gains about 5% average improvement on
‘All’ classes over 3 datasets, demonstrating the importance
of multi-modal information in GCD task and our TES can
be widely used in multiple GCD methods.

(a) (b)

Figure 6. t-SNE visualization of text features for all classes on
CIFAR10 test set. (a) shows the distribution of text features gen-
erated by TES, while (b) shows the learnable text features.

Different ViT fine-tuning strategies. GCD [17] and
SimGCD [23] propose to build the classifier on post-
backbone features instead of post-projector. Because the
ViT backbone of CLIP contains a lot of knowledge learned
from substantial image-text pairs, and the projector plays a
role in modal alignment, it’s essential to compare the effects
of different ViT finetune strategies. As shown in Fig. 7,
we conduct multiple evaluations with last-block fine-tuning,
projector fine-tuning, and adapter [5] fine-tuning strategies.
Though simply fine-tuning the projector can gain a higher
accuracy across CUB and Aircraft datasets, it falls be-
hind the last-block fine-tuning method for generic datasets.
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Figure 7. Different ViT finetune strategies.

Overall, our GET perfoms the best among all methods. For
a fair comparison, we select the last-backbone fine-tuning
strategy for baseline methods and our dual-branch multi-
modal learning across all datasets except projector fine-
tuning for ImageNet-1K.
Additional baseline results. As shown in Tab. 12. We
provide results of PromptCAL-CLIP on three fine-grained
datasets and three image classification generic datasets.
For three fine-grained datasets, our method outperforms
PromptCAL-CLIP on all datasets and classes. In partic-
ular, we surpass PromptCAL-CLIP by 11.5%, 4.5%, and
4.4% on ‘All’ classes of CUB, Stanford Cars, and Aircraft,
respectively. As for the generic datasets, our method sur-
passes PromptCAL-CLIP on all datasets and achieves the
best results on CIFAR-100 and ImageNet-100 datasets.
Error bars for main results. The experimental results
presented in the paper are the averages of three independent
repeated runs. We provide the performance standard devia-
tion of our main results on all evaluation datasets with three
runs in Tab. 14.

Dataset All Old New

CIFAR10 97.2±0.1 94.6±0.1 98.5±0.1
CIFAR100 82.1±0.4 85.5±0.5 75.5±0.5
ImageNet-100 91.7±0.3 95.7±0.0 89.7±0.4
CUB 77.0±0.5 78.1±1.6 76.4±1.2
Stanford Cars 78.5±1.3 86.8±1.5 74.5±2.2
FGVC-Aircraft 58.9±1.2 59.6±0.6 58.5±1.8
Herbarium 19 49.7±0.4 64.5±0.8 41.7±0.8
ImageNet-1K 62.4±0.0 74.0±0.2 56.6±0.1
ImageNet-R 58.1±2.4 78.8±0.5 47.0±3.9

Table 14. The standard deviation of our method.



Results of two branches. We report the results of vi-
sual and text branches for ‘All’ classes across six datasets
in Tab. 15. For 2 generic datasets (CIFAR10 and ImageNet-
100), though the text branch does not achieve state-of-the-
art performance, it still exhibits great performance. For 2
fine-grained datasets (CUB and Stanford Cars), both visual
and text branches outperform previous methods by a large
margin, while the visual branch performs better. For 2 chal-
lenging datasets (ImageNet-1K and ImageNet-R), both vi-
sual and text branches achieve remarkable results. Due to
the challenging datasets comprising a significant number
of unknown classes (ImageNet-1k dataset) or diverse vi-
sual concepts within the same class (ImageNet-R dataset),
the consistency in text information for the same class con-
tributes to the potentially higher discriminative power of the
text branch, leading to better performance.

Dataset Visual Branch Text Branch

CIFAR10 97.2±0.1 95.1±0.0
ImageNet-100 91.7±0.3 90.1±0.1
CUB 77.0±0.5 73.6±0.8
Stanford Cars 78.5±1.3 73.1±0.6
ImageNet-1K 62.4±0.0 63.5±0.1
ImageNet-R 58.1±2.4 62.6±0.9

Table 15. The results of two branches.

We also provide the performance evolution of two
branches throughout the model learning process on the
CUB dataset (see in Fig. 8), the mutual promotion and fu-
sion of the two branches resulted in excellent outcomes. In
our experiments, we consistently and simply select the re-
sults from the visual branch.
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Figure 8. Performance evolution of two branches throughout the
model learning process on the CUB dataset.

Results with the estimated number of classes. Vaze et
al. [17] provides an off-the-shelf method to estimate the
class number in unlabelled data. We introduce text embed-
dings generated by our TES into the off-the-shelf method by
simply concatenating text and image features before class
number Estimation. As shown in Tab. 16, multi-modal fea-

Method CIFAR10 CIFAR100 ImageNet-100 CUB Stanford Cars

Ground truth 10 100 100 200 196
GCD-CLIP 5 (50%) 94 (6%) 116 (16%) 212 (12%) 234 (19%)
+TES 8 (20%) 97 (3%) 109 (9%) 212 (12%) 220 (12%)

Table 16. Estimation of class number in unlabelled data. The table
shows the estimated number and the error.

Method Known C
CUB Stanford Cars

All Old New All Old New

GET ✓ 77.0 78.1 76.4 78.5 86.8 74.5
GET ✗ (w/ Est.) 75.6 75.9 75.5 76.8 87.6 71.6

Table 17. Results with the estimated number of classes

tures can estimate a more accurate class, demonstrating our
multi-modal method is effective in category number estima-
tion. Following previous works, we assume the number of
classes for each dataset is known and provide experimental
results in the main paper. Tab. 17 shows the results using the
estimated number of classes for CUB and SCars datasets.
Computation complexity analysis. Tab. 18 shows the
computation complexity. Our TES uses a frozen visual en-
coder and stage 2 finetunes the last block in another visual
encoder, thus the 2 stages share the same visual encoder for
the first 11 blocks but a different last block, resulting in a
low computational complexity increase.

Inference Time Learnable Params FLOPs
Methods (s/per img) (M) (G)

SimGCD-CLIP 5.2 × 10−3 13.4 35.2
GET(ours) 5.2 × 10−3 15.6 38.6

Table 18. Computation complexity analysis.

The anchor prototypes. In the CICO, the anchor pro-
totypes are calculated by averaging the features of labeled
anchor samples, making them more dynamic compared to
directly using the prototype classifier η. The ablation on
CUB is shown in Tab. 19.

Methods All Old New

use classifier η 76.3 77.6 75.6
use anchors (ours) 77.0 78.1 76.4

Table 19. The anchor prototypes.

Experiments on the Clevr-4 dataset Recently, [20] pre-
sented a synthetic dataset Clevr-4 to examine whether the
GCD method can extrapolate the taxonomy specified by the
labeled set. Most attributes of Clevr-4, such as shape, color,
and count, are easily clustered (achieving close to 99% ac-
curacy with CLIP). However, texture attributes pose a cer-
tain level of challenge. Therefore, we evaluate our method
on the texture attributes of Clevr-4. As shown in Tab. 20,
our method achieves higher accuracy and lower standard de-
viation compared to SimGCD-CLIP, proving that the GCD
method can cluster data at specified levels based on the con-
straint of labeled text information, which is worthy of atten-
tion and exploration.

Methods All Old New

SimGCD-CLIP 83.1±7.4 99.2±0.3 75.1±10.9
GET(ours) 90.0±1.9 99.2±0.2 85.5±2.8

Table 20. The results on Clevr-4 (Texture) in 5 runs.



CUB Stanford Cars FGVC-Aircraft CIFAR10 CIFAR100 ImageNet-100

Method All Old New All Old New All Old New All Old New All Old New All Old New

WordNet [13] 41.8 35.2 45.1 26.5 21.9 29.0 16.5 13.3 18.2 18.0 18.6 17.8 18.6 18.9 18.8 28.8 39.1 23.6
CC3M [15] 20.8 20.8 20.9 18.7 19.0 18.5 15.4 11.6 17.3 8.1 8.3 8.1 13.0 13.6 11.6 8.9 12.1 7.2

Table 21. Results (%) of retrieval-based approach.

Retrieval baselines. To address the challenge of miss-
ing class names, another method might involve utilizing a
knowledge base of potential class names (nouns) and then
using CLIP to retrieve names from this corpus. Images
that share the same retrieved name could be grouped to-
gether, and clustering accuracy could then be measured
based on these groupings. Therefore, this retrieval-based
approach serves as an important baseline. Tab. 21 shows the
results of retrieval-based approach, using WordNet [13] and
CC3M [15] as corpus.
The impact of hyper-parameter λc. In our method, we
set λc to 1 for all datasets to prevent over-tuning. Tab. 22
shows the ablation of the impact of λc.

λc

CUB Stanford Cars

All Old New All Old New

0.5 76.3 74.7 77.1 79.0 88.7 74.3
1 77.0 78.1 76.4 78.5 86.8 74.5
1.5 75.3 75.9 75.0 79.6 90.7 74.2
2 75.0 77.3 73.8 79.0 86.8 75.3

Table 22. The impact of hyper-parameter λc

11. Pseudo-code
The training procedure of the proposed GET is presented
in Algorithm 1.

12. Different pre-trained models
In this section, we perform an extensive empirical inves-
tigation to explore the impact of different types of pre-
trained models on GCD clustering performance, which
clearly demonstrates that different types of backbones ex-
hibit varying biases across different datasets, classes, and
even paradigms. We choose DINO [1], which is based
on teacher-student learning; MoCo v3 [2], based on con-
trastive learning; iBOT [27], based on contrastive masked
image modeling; and CLIP [14], which is based on vision-
language contrastive learning.

We first evaluate the results of GCD and SimGCD across
different types of pretraining models. As shown in Fig. 9,
different types of backbones exhibit varying biases across

Algorithm 1: Pseudocode for GET.
Input: Training dataset D = Dl ∪ Du, a FC layer l(·|θt)

and a MLP layer g(·|θm), fixed CLIP’s image
encoder Ei and text encoder Et, a trainable image
encoder fv(·|θv), a prototypical classifier η(·|θc)
and a linear projection p(·|θp).

Output: Predicted label ŷi.
/* Stage 1: TES Training */
repeat

for (xi,yi) ∈ each batch do
zv
i = Ei(xi) // visual embedding

ti = l(zv
i )) // pseudo text tokens

ẑt
i = Et(ti) // pseudo text embedding
Lalign ← Eq. (5) and Eq. (6)
Ldistill← Eq. (7)
LTES = Lalign + Ldistill

Back-propagation and optimize θt.

until reaching max epochs;
/* Stage 2: Dual-branch training */
repeat

for (xi,yi) ∈ each batch do
/* Visual-branch */
zv
i = fv(xi), h

v
i = g(zv

i ), p
v
i = η(zv

i )
Compute Lv

ucon and Lv
scon by replacing h in Eq.

(1) and Eq. (2) with hv

Lv
rep ← Eq. (8)

Compute Lv
cls by replacing p in Eq. (3) and Eq.

(4) with pv

Lv
db ←Eq. (9)

/* text-branch */
ẑt
i = Et(l(Ei(xi)))

ẑtl
i = p(ẑt

i), h
t
i = g(ẑtl

i ), p
t
i = η(ẑtl

i )
Lt

db = Lt
rep + Lt

cls

Compute the multi-modal mean entropy
regularization Hmm

/* CICO */
Calculate the visual and text anchors Pv,Pt

Compute the instance relationships by Eq. (10)
LCICO ← Eq. (11)
LDual ← Eq. (12)
Back-propagation and optimize θv, θm, θc, θp.

until reaching max epochs;
return ŷi = η(fv(xi)).

different datasets, classes, and even paradigms. For exam-
ple, iBOT outperforms DINO in non-parametric GCD, but
DINO excels in parametric GCD. MOCO demonstrates the
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Figure 9. The results of GCD and SimGCD with different backbones across six datasets.

SimGCD-DINO SimGCD-MoCo SimGCD-iBOT SimGCD-CLIP

Figure 10. Attention map of class tokens on CUB (first three rows) and StanfordCars (last three rows) datasets. Each row displays the
attention areas and attention maps for each image of SimGCD [23] with different backbone models.

strongest category discovery ability for the CIFAR dataset.
CLIP performs exceptionally well across all datasets, yet
struggles with low-resolution CIFAR data in parametric
GCD.

We then visualize and compare the attention map of class
tokens of different backbones in Fig. 10. For the CUB
dataset, the DINO, iBOT, and MoCO backbones tend to
focus more on the feathers of the birds, while CLIP addi-
tionally emphasizes the more discriminative head area. For

the StanfordCars dataset, the DINO backbone focuses on
the car light and wheel; the MoCo backbone focuses on the
front fenders of the car, which is less discriminative; the
iBOT backbone focuses on the car light and the car win-
dow, which is more discriminative than DINO thus leading
to better results; the CLIP backbone focus on both the front
of the car and global information, showcasing stronger dis-
criminative capabilities.

A key observation is that though promising results have



Figure 11. Cluster accuracy of SimGCD-CLIP and our GET on some visually similar classes in CUB datasets. GCD methods relying solely
on a single visual modality result in empty clusters(highlighted by red boxes); Our multi-modal approach GET avoids empty clusters and
achieves higher classification accuracy.

been achieved, different backbones, even powerful CLIP,
still perform inferiorly on distinguishing certain visually
similar classes, such as the classes in all fine-grained
datasets. We argue that this is due to current methods
only utilize a single visual modality of information, another
modality may potentially compensate for the lack of dis-
criminative ability. In the meanwhile, the potential of cur-
rent GCD methods heavily relies on the generalization abil-
ity of pre-trained models, prompting us to select a more
robust and realistic pre-training model. As a large-scale
model, CLIP shows strong generalization ability on down-
stream tasks and strong multi-modal potential due to its
image-text contrastive training, thus we decide to introduce
it into the GCD task. This not only unleashes the latent po-
tential performance of existing methods but also serves as a
bridge for us to leverage multi-modal information.

13. Cluster results of GET

As shown in Fig. 11, we present the comparative cluster
accuracy between our multi-modal approach and previous
single-modal methods on some visually similar classes in
CUB datasets. It is worth noting that relying solely on vi-
sual information, even with a powerful CLIP backbone, the
previous method (SimGCD-CLIP) still struggles to differ-
entiate some categories, resulting in empty clusters. How-
ever, leveraging the rich and discriminative text informa-
tion of categories, our GET achieves more accurate classi-
fication results on CUB without any empty clusters across
all categories, demonstrating the importance of multi-modal

information in the GCD task. Furthermore, we showcase
the clustering results of SimGCD-CLIP (see in Fig. 12) and
our GET (see in Fig. 13) for the 170th class, “Mourning
Warbler”, in the CUB dataset. SimGCD-CLIP relies solely
on visual information to categorize birds based on shape and
posture, the model categorizes many visually similar sam-
ples as “Mourning Warbler”. Our approach, by incorporat-
ing text information, enhances the model’s discriminative
ability and correctly identifies all instances of the “Mourn-
ing Warbler” class, achieving 100% classification accuracy
for this visually challenging category.

14. Limitations and Broader Impact

Limitations and future works. A limitation of our ap-
proach is that we treat visual and text information as equally
important. In fact, some samples may have richer and more
discriminative visual information than textual information,
and vice versa. A more appropriate approach might involve
enabling the model to adaptively leverage multimodal infor-
mation, autonomously assessing which modality’s informa-
tion is more crucial. We will delve deeper into this aspect
in our future work.
Broader impact. Our approach introduces text infor-
mation into the GCD task through a novel text embedding
synthesizer module, extending the GCD to a multi-modal
paradigm without extra corpus or models. We believe that
the introduction of TES will encourage future research in
solving GCD in a multi-modal manner.
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Figure 12. SimGCD-CLIP cluster results visualization for class “Mourning Warbler” in CUB dataset. SimGCD-CLIP categorizes birds
based on shape and posture and incorrectly identifies many visually similar categories, resulting in a clustering accuracy of 6.7% for class
“Mourning Warbler”.

Figure 13. Cluster results visualization for class “Mourning Warbler” in CUB dataset of our GET. Our method uses multi-model informa-
tion, achieving 100% classification accuracy for this visually challenging category.
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