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Human and AI Decision-Making in Hybrid Visual Foraging
S1. Implementation details of Hybrid Visual Foraging
S1.1. Human psychophysics experiments
The search grid contained either 90, 105, or 120 items, and the positions of these items shuffled every 3 seconds to prevent a
fixed reading strategy from the top left to the bottom right of the screen.

Each experiment consists of 10 blocks, where the target objects and their values remain consistent across trials within the
same block, but the prevalence of targets as well as the number of target objects may vary across the trials within the block.
In each foraging trial, subjects searched for N → {1, 2, 4} target objects, each with a varying number of target instances.
Targets and distractors in the hybrid foraging search arrays were randomly selected from a pool of 2,400 unique items used
in [14]. The order of the blocks was counterbalanced across subjects.

Each experiment takes 1 hour to complete. A total of 15 subjects were recruited, yielding 750 trials, containing 50514 eye
fixations and 12851 mouse clicks. All the experiments are conducted with the subjects’ informed consent and according to
the protocols approved by the Institutional Review Board of our institution. Each subject was compensated with monetary
rewards.

S1.2. Foraging environments for AI models
We sub-sample various combinations of these experimental parameters for the procedural generation of foraging
environments: First, the total number of items on the search array is fixed at 105, where 73 serve as distractors, and 32
are designated as target instances. Second, a fixed set of 4 items is randomly selected from the pool of 2,400 items and used
as the set of target items throughout the AI model training. Third, there are always 4 target objects present on the search
arrays. Fourth, the prevalence ratio among these 4 target items is randomly determined. Finally, the values of the four target
items are consistently set at 2, 4, 8, and 12.

S1.3. In-domain and out-of-domain test conditions for AI models
To benchmark AI model performance in hybrid foraging tasks, we introduce two in-domain hybrid foraging conditions that
align with the distribution of the training environments that the AI models were optimized to solve. To assess whether the AI
models can generalize to out-of-distribution (OOD) hybrid visual search tasks, where experimental parameters differ from
those encountered during training, we introduced five out-of-distribution conditions. Below is the summary of all seven
conditions:
(1) In-domain Uneven Value, Equal Prevalence (UnValEqPre) The prevalence of all four targets was set at 25%, while
their values varied, with one target worth 2, another 4, a third 8, and the fourth 16.
(2) In-domain Uneven Value, Unequal Prevalence (UnValUnPre) The first target had a value of 2 with 53% frequency, the
second a value of 4 with 27%, the third a value of 8 with 13%, and the fourth a value of 16 with 7%.
(3) OOD - Even Value, UnEqual Prevalence (EqValUnPre) Each of the four target objects had a value of 8, but their
prevalence varied, with 53% 27% 13%, and 7% respectively.
(4) OOD - Unseen target objects (UTargets) We replace the target and distractor objects from the pool of 2400 items used
for training with unseen items, while maintaining the other experimental parameters.
(5) OOD - Unseen value combinations (UValues) The prevalence of all four targets was randomized, and their absolute
values exceeded the range used for training, with their relative values changing in either arithmetic or geometric series.
Specifically, the value combinations included (1, 2, 3, 4), (1, 2, 4, 8), (8, 9, 10, 11), (8, 16, 32, 64), (16, 18, 20, 22), and (16,
32, 64, 128).
(6) OOD - Unseen total item numbers (UItemNum) Unlike during training, when the total number of items on the screen
was consistently 120, the search arrays were populated with either 90 or 105 items.
(7) OOD - Unseen target object sizes (USetSize) The set size of target objects was manipulated to include either one or
two; specifically, the single target object was valued at 4, while the two target objects were valued at 4 and 16.

S1.4. Eccentricity dependent pooling
We replicated the eccentricity dependent pooling from [51], aligning it with neurophysiological recordings in macaque
monkeys. A conversion of 30 pixels to 1 degree of visual angle (dva) was applied to match human behavioral experiments.



To examine how the layer-specific scaling factor ωl affects search efficiency and average saccade amplitudes, we varied ωl by
a coefficient ε. Tab. S1 shows that increasing ε reduces saccade size and cumulative rewards in UnValEqPre. VF with ε = 1
best matches human saccades and achieves comparable rewards.

Humans ε = 1 ε = 2 ε = 4
Avg.Sac.Size (dva) 4.05 4.06 2.26 2.12
NormScore (%) 87.4 72.6 6.4 2.95

Table S1. Ablation of layer-specific scaling factor in eccentricity dependent pooling

S2. Reinforcement learning
We recall the Markov decision process (MDP) framework with finite state space S and action space A. An MDP is defined
as M = (S,A, P r, r, ω), where Pr : S ↑A ↓ !(S) is the transition function, r : S ↑A ↓ R is the reward function, and
ω → (0, 1) is the discount factor. Given an initial state s0, the goal of reinforcement learning (RL) is to learn a policy ϑ that
maps a state s → S to a distribution ϑ(· | s) over the action space, aiming to maximize the expected cumulative discounted
reward.

For any policy ϑ, the action-value function Q
ω(s, a) represents the expected return starting from state s, taking action a,

and thereafter following policy ϑ. It is defined as Q
ω(s, a) = Eω,Pr
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denotes the expectation over trajectories generated by following ϑ under the transition dynamics Pr. The state-value function
V
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s (s), quantifying the relative advantage of taking action a in state s under policy ϑ.

S2.1. Proximal Policy Optimization
Proximal Policy Optimization (PPO) is a policy gradient method designed to improve the stability and efficiency of policy
updates. PPO ([109]) uses a surrogate objective function with a clipping mechanism to prevent large, destabilizing updates.
The surrogate objective function is defined as:
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where Ã
ωω is an estimate of the advantage function, and ϖ0 is a hyperparameter controlling the extent of clipping.

In this formulation, the first term inside the min operator is the standard policy gradient objective, while the second
term applies the clipping mechanism to ensure that the policy update does not result in excessively large changes. This
clipping mechanism is crucial for maintaining the stability of the learning process. Our VF leverages Generalized Advantage
Estimation (GAE) [108] for advantage calculation and TD(ϱ) for value estimation [11]. This choice is motivated by the
computational efficiency of TD(ϱ) compared to Monte Carlo sampling [56], as noted in the work of GAE.

S2.2. Additional training and implementation details
In practice, rather than learning two separate policies for actions at different times i.e., the mouse click at t and the fixation
at t + 1, we modify the click policy ϑc(·|s) to output the binary click decision at t + 1, aligning it with the fixation policy.
Empirically, this leads to more efficient training and faster convergence. Importantly, this modification does not alter the
hybrid foraging setup, as VF can fixate on the same grid cell consecutively. In other words, VF may initially decide not to
click the item fixated at t+ 1 but can later decide to click it by fixating on the same item again at the next time step.

The search image IS has a resolution of 1024↑ 1024 pixels, while the target images IT are 64↑ 64 pixels, corresponding
to the size of one cell within a 16↑16-sized grid in IS . The search feature map ςS has dimensions 32↑ 32↑ 512, while the
target feature maps ς1:N

T are 2↑ 2↑ 512. We implemented the target modulation function M with a stride of 2, resulting in
MF with dimensions 16↑ 16↑N , where the spatial size matches the grid size of the search image.

Our VF was trained over 3 million timesteps in the first stage, taking approximately 3 days, and over 0.6 million timesteps
in the second stage, taking approximately 1 day. All training was conducted on a single NVIDIA RTX A6000 GPU.

S2.3. Deep Q-leaning
Value-based reinforcement learning method solves MDP problem by getting an optimal value function. The optimal value
function is defined by V

↑
s (s) = supω V

ω
s (s) and similarly Q

↑(s, a) = supω Q
ω(s, a). We use deep Q-learning (DQN) as a

baseline method, which obtains Q↑ based on the update Qi+1 (st, at) = (1↔ φt)Qi (st, at)+φt (rt + ωmaxa Qi (st+1, a)),



where φt → (0, 1) is the learning rate. We employ the ↼-greedy approach for action selection based on a value function, which
means that we pick argmaxa Qi(s, a) with 1↔ ↼ probability and a random action with probability ↼.

As our baseline, we do not incorporate target feature modulation or target value modulation. Instead, we designed a deep
neural network (DNN) to predict the value function in an end-to-end fashion. This DNN takes as input a search image, target
images, and target values. It uses two 2D-CNNs to extract features from the search and target images, respectively, then
concatenates the search features, target features, and target values. An MLP with three fully connected blocks outputs an
approximate state-action value for each action. Following the standard DQN used in [92], our approach incorporates the key
techniques of target networks and experience replays.

S2.4. PPO Hyperparameters

This hyperparameters used at two training stages are listed as follow:

Training stage Stage 1 Stage 2
Discount (ω) 0.99 0.99
GAE parameter (ϱ) [108] 0.95 0.95
Batch size 512 512
Epochs 5 1
PPO clip range 0.05 0.05
Entropy coefficient [90] 0 0.001
Learning rate 2e-4 2e-4

Table S2. PPO Hyperparameters.

S3. Additional experiment results

S3.1. Ablations reveal critical component designs

We systematically ablated several essential components in our VF model and reported their results in Tab. S3. (1) Rather than
using reinforcement learning, we train VF on human eye movements and mouse clicks through supervised learning (Behavior
Cloning). The lower Norm. Score of Behavior Cloning indicates that human eye movement data is limited, leading to model
overfitting. Hence, the model struggles to generalize to unseen target value and prevalence combinations. (2) We replace
the transformer-based decision-making module with a 2D-CNN, referred to as VF(2D-CNN). The lower Norm. Score of
this ablated model indicates that the transformer architecture, with its ability to capture long-range dependencies and global
context through self-attention, leads to better decision-making. (3) We ablate VF by replacing the learnable value encoder
with explicit value embeddings and directly feeding them into the transformer (Explicit Val. Emb.). The small drop in
Norm. Score suggests that a learnable value embedding is more effective for making better decisions. (4) We remove the
permutations of target and value pairs (W/o Augmentation), resulting in a significant drop in Norm. Score, especially under
the EqValUnPre condition. This indicates that the data augmentation in VF is crucial for enhancing generalization to OOD
hybrid foraging tasks.



Ablations UnVal UnVal EqVal
EqPre UnPre UnPre

Behavior Clone 61.7 48.5 60.1
VF (2D-CNN) 75.3 63.7 70.0
Explicit Val. Emb. 69.2 56.7 61.8
W/o Augmentation 51.3 52.0 52.2
Full VF (ours) 72.6 67.1 81.6

Table S3. Ablation studies reveal critical design choices of our VF model. Norm.Score for various ablated models are reported over
UnValEqPre, UnValUnPre, and EqValUnPre conditions. See Sec. S3.1 for ablated models. Best is in bold.

S3.2. Human motor response

Figure S1. Human reaction time in a trial as a function
of click numbers. We recorded clicks in all subjects’
trials and showed the result of the linear fit.

Figure S2. Human response time in a trial as a function
of fixation numbers. We recorded fixations in all
subjects’ trials and showed the result of the linear fit.

S3.3. Human fixation duration
Fixation durations are longer on targets with higher values. We also investigate human fixation durations on targets with
varying values under the UnValEqPre and UnValUnPre conditions. From Appendix Fig. S3, surprisingly, we found that
humans tend to spend more time fixating on higher-value targets compared to those with lower values. For example, under
the UnValEqPre condition, the mean eye fixation duration is 344 milliseconds on targets valued at 16, while the duration is
309 milliseconds on targets valued at 2. This may be attributed to the enhancement of learning and memory, where longer
fixation durations facilitate cognitive processing and reinforce associations between previous decision-making strategies and
positive outcomes.

Figure S3. Eye fixation duration for different types of targets in UnValEqPre (T1: mean = 309ms, T2: mean = 336ms, T3: mean =
353ms, T4: mean = 344ms), UnValUnPre (T1: mean = 302ms, T2: mean = 339ms, T3: mean = 325ms, T4: mean = 342ms)
and EqValEqPre (T1: mean = 342ms, T2: mean = 346ms, T3: mean = 339ms, T4: mean = 347ms). Fixation durations
are significantly different for targets with different values in UnValEqPre condition (p = 0.13) and UnValUnPre (p = 0.12). Fixation
durations are not significantly different for targets with same value in EqValEqPre (p = 0.98).



S3.4. Average reward within fixation area

Figure S4. Mean rewards of all target objects within a radius of 1.5 degrees of visual angle around each fixation predicted by our VF model
(UnValEqPre: mean = 8.08, UnValUnPre: mean = 3.60, and EqValEqPre: mean = 3.00), made by human subjects (UnValEqPre:
mean=3.30, UnValUnPre: mean=1.29, and EqValEqPre: mean=1.28) and predicted by the chance model (UnValEqPre: mean = 2.75,
UnValUnPre: mean = 0.98, and EqValEqPre: mean = 0.84). For all three conditions, both human subjects and our VF model tend to
fixate on regions associated with average rewards significantly higher than that derived from random fixations. We conducted two-tailed
t-tests. All p-values are below 0.01.

S3.5. Click behavior

A B
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Figure S5. Proportion as a function of number of clicks for (A) humans in UnValEqPre, (B) humans in UnValUnPre, (C) VF model in
UnValEqPre, and (D) VF model in UnValUnPre. Solid lines are click proportions of different types of targets. Dash lines are proportions
of different targets that remain on screen. Colors indicate the target types.



S3.6. Scanpath similarity
We calculated the results of ScanMatch and Fixation Edit Distance (FED) to assess the scanpath similarity between humans
and AI models (Tab. S4). Best are in bold. Results show that our VF generates more human-like scanpaths than chance but
with lower similarity than within-subject scanpaths across repeated trials and between subjects performing the same trials.

Within-subject Between-subject VF Chance
ScanMatch ↗ 0.3556 0.3173 0.2474 0.1596
FED ↘ 39.60 47.50 55.90 60.10

Table S4. Scanpath similarity.

S3.7. Penalty ablation
The ↔1 penalty for distractors ensures consistent rewards for both the agent and humans. Clicking on blank areas wastes
time and reduces available clicks, so we apply a ↔0.01 intrinsic penalty to discourage this and prevent suboptimal behavior
in VF. We conduct ablation experiments to assess the impact of this instinctive reward and find that it has no significant effect
on the final result (see Tab. S5).

-1 -2 -0.01 0
NormScore (%) 75.49 76.5 72.6 79.9

Table S5. NormScore of UnValEqPre condition trained with different instinctive reward.

S3.8. External baseline
We introduced four external baselines that do not utilize foveated vision: (1) IVSN: This baseline iteratively selects the
maximum from four-channel similarity maps and applies infinite inhibition of return. (2) IVSN-NN: A variant of IVSN,
where the attention map is modulated by value, incorporating an additional neural network module trained via behavior
cloning. (3) pre-GF: The pre-trained GazeFormer model [93]. (4) GF: The GazeFormer model fine-tuned on our in-domain
data. We tested these models in our OOD tasks. Our VF outperforms all of them (see Tab. S6). The inferior performance of
GF and pre-GF compared to our VF is due to their failure to account for descriptive texts of multiple targets with different
values during the OOD foraging.

EqVal UValues UItemNum USetSizeUnPre
GF 1.6 0.4 0.61 0.39

pre-GF 0.93 0.83 0.18 0.79
IVSN 76.03 47.6 47.05 77.76

IVSN-NN 72.72 46.85 47.18 64.03
Ours 81.63 70.87 65.16 72.34

Table S6. NormScore (%) of external baselines tested in OOD tasks. Best is in bold.

S3.9. Qualitative results of humans and our VF model
We visualized the scanpaths and click locations of our VF model and a human subject in Fig. S6B and C, respectively. As
item positions were shuffled every three seconds in our experiment, we only depict clicks and fixations that occurred before
the first shuffle. Both the human and the model primarily clicked on the highest-value targets (red balls), selecting them in 3
out of 6 clicks, indicating that target values strongly influenced their click decisions.

S4. Future works
First, we observed that humans occasionally clicked on items they were not directly fixating on, while VF assumes eye
movements always align with the locations at which foraging decisions are made. Second, a strong priming effect was
evident in humans, especially when target values were equal, showing the long-lasting influence of prior experiences on
human decisions. Our VF currently lacks the ability to model such long-term dependencies, as it does not have a working
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Figure S6. Qualitative results of our VF model evaluated under the UnValEqPre condition. (A) displays the targets along with their
corresponding values for this example trial. (B) illustrates the model’s scanpaths and click locations, while (C) presents those of a human
subject. Yellow dots indicate fixations, with connecting red lines representing visual scanpaths, and black numbers denoting fixation order.
Red squares mark clicked items.

memory integrating reinforcements from past actions into current decisions. Third, in hybrid foraging, humans actively
compare fixated items with those in memory, a process known as memory search. Our VF assumes perfect memory search,
where all targets are compared to the fixated item simultaneously. Fourth, fixation duration is another important aspect of
human eye movement decisions. However, our VF model currently lacks the ability to capture fixation duration. Lastly,
real-world environments may present additional challenges, such as target occlusions and physical constraints imposed by
scene contexts. Extending the study of hybrid visual foraging beyond simplistic stimuli in controlled experimental settings
remains an intriguing research direction.


