HotSpot: Signed Distance Function Optimization with an Asymptotically
Sufficient Condition

Supplementary Material

A. Proofs and Derivations
A.1. Proof of Proposition 1.

Here we analyze the 2D case, but the following derivation
naturally generalizes to 3D. We denote 2 a as pl, as P2,
and let n?(z,y) = p} + p3. Following the derlvatlon from
Kulyabov et al. [59], we can obtain the characteristic equa-
tions as follows. For any a # 0 if any field u satisfies the
eikonal equation,
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This equation holds for both « and «’ when we take the
characteristic curve as
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We assume s € (0, M) (M > 0 can be infinity) is a dif-
ferentiable domain such that every derivative exists and all
of these equations hold. Then we prove such a parametric
curve is a ray or a segment.
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Similarly, u, is also a constant. Then the direction
vector in Eq. (21) is also a constant vector. Hence,
(z(s),y(s)) is a ray or a segment. Given u(xo,yo) = uo,
we can solve this ordinary differential equation and obtain

u(z(s),y(s)) = uo+s. Respectively, u'(zq, yo) = uo+uoge
and v/ (z(s),y(s)) = ug + s + uge. On this parametic line,
we have the following.

u'(@(s)) — u(x(s)) = uoe- (23)

A.2. Proposition 2 proof.

We first consider the 3D case. First, for the original solution
of Eq. (4), we denote it as h. For the following disturbance
equation, we denote its solution as h.:

(V2= A)he =0 VY cR®\ B(xg,¢)
{ lim he < o0, he(®) = hoe Vo € IB(o, ¢) (24)

[lz||—

Then the perturbed b’ = h,+h still satisfies the screened
Poisson equation in R?\ (BUT'). Given the spherical condi-
tion, we can analytically solve this equation by transform-

ing it to an ordinary differential equation. Knowing that
V2h(r) =r—2. d(rz%)/dr, we have:
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Given the boundary conditions, we obtain A = eh()ee’\6
and B = 0. Consequently, the solution is as follows.
he(r) = Shoee™™ | Wr > ¢ (26)
r

We can further extend our analysis to 2D. Given

V2h(r) = r~1-d(r4t)/dr, we have another ODE in 2D:
th 1dh
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Then we find it becomes a modified Bessel function with
the following general solution:



h(z) = AKo(2) + Blo(2), (28)

where K represents the modified Bessel function of the
second kind and I represents the modified Bessel function
of the first kind. Given the boundary conditions, we obtain
A= Kffi’ie) and B = 0. Then we place r back and have the
final solution as follows:

hOe
Ko(Xe)

It should be noted that K converges to 0 when Ar goes
to infinity. More rigorously, Ko(Ar) and e=*"/v/\r are

infinitesimals of the same order [60]. Related property then
becomes similar to the 3D case.

h(r) = Ko(Ar) (29)

A.3. Convergence speed proof.

Here we consider the 3D case. For single point , given the
following screened Poisson equation

(V2= M)h =0 Vx € R®\ B(xo,e)
lim h=0, h(z) =e V€ IB(xo, €

||| =00

) (30)

Its solution is similar to Eq. (26):

h(r) = ;efm, Vr > e 31
Then we denote S; = OB(x;, €), h; is the corresponding
single point solution, 7 is the minimum distance for any
two points from I'. When € < 7y and X is large enough, we
can assume that when i # j, h;(S;) = h;(x;). Given a
finite set of boundary points I' = {x1, xs,...,x N} that is
the input of the signed distance function reconstruction task,
we can use a linear combination of single point solutions to
obtain a new function satisfying the screened Poisson equa-
tion and a new boundary condition that is:

(V2= X)h =0 VxecR3\UyB(x;,¢)
lim h=0, h(x)=e? V&ecUysS;
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We then set the boundary condition equation to solve the
coefficients:
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We denote the matrix here as H € RY*N_ Its every
diagonal element is e~*¢, which is the largest in that row.

This equation has at least one solution C' € R¥ and every
€ (0,1). Finally, h = (hq,...,hy)C is the solution of
Eq. (32). If we set r; = || — ||, then

—EE C;

Now we analyze the bound of 1 In(hx(x)) + dr(z).
First, we prove its upper bound is 4 [In @ TV )]-
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Here, the first inequality holds because dr < r; for all 4
and every h;(r) is monotonically decreasing w.r.t. 7. Then
every ¢; < 1, so we can obtain the second inequality.

Second, we prove its lower bound is ¢ ln dr(w)

For any row in Eq. (33), since we know that the largest
element is on the diagonal equal to e~*¢, we have

N N
= Zcihi(Sj) < Zcth(S )
i=1 =1

Hence, vazl ¢; > 1. Next, we can set ho(r;) = h;(x),
where hg is the decay pattern in Eq. (31). hg is a convex
and monotonically decreasing function so that we can apply
these inequalities.

N
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Given YV i=1Ci = 1, we have h(z) > e“;—. By basic
transformations of this, we obtain the whole 1nequa11ty as
follows:

1 € 1 €
—In— <dr — <—(In—+InN
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where |uy| = —3Inhy. It should also be noted that
In ﬁ(m) is a constant scalar field so that when x is fixed and

A increases to infinity, dr — |uy | is first-order infinitesimal.



B. Experiments

In all of our experiments, we use p = 1 for Eq. (2) and
Eq. (3).

B.1. 1D Verification

We can easily identify which loss function is not a suffi-
cient constraint by observing its input. As discussed in the
main text, if a loss function depends solely on the first-order
derivative of the SDF or any higher-order derivatives, it is
inherently insufficient as a constraint and cannot exclude
other non-SDF solutions.

Our experiments also demonstrate that implementations
optimizing SDFs with the closest point [2, 51, 52] may
struggle when making queries near the interpolated surface.
As mentioned at the end of Section 3, after the neural net-
work interpolates these points due to spectral bias [58], our
loss remains effective in faithfully capturing the distance to
the interpolated surface.

For other cases, we can easily test whether a constraint
is insufficient with simple 1D verifications.

We found one possible candidate to be a sufficient con-
straint from Marschner et al. [5] with following loss:

Lep = /Q ufz — u(@)Vu(@)Pde (39

The loss is designed to optimize constructive solid ge-
ometries and formulated using both neural network outputs
and their gradients, ensuring that when taking a step in the
direction indicated by the SDF, the new position should
have a distance value close to zero.

However, our experiment in Fig. 11 reveals that it cannot
exclude non-SDF solutions like u(z) = 0, confirming that
it is not a sufficient constraint.

B.2. 2D Dataset

Fig. 12 provides an overview of the ground truths in the
2D dataset. Starting with simple shapes from DiGS [3] and
StEik [4], we extended the dataset to include 14 shapes. We
generate a total of 150,000 points along the boundaries in a
single vector image. For each iteration, we randomly select
10% of the generated points to compute the boundary loss.

In our first 2D experiments (Table 6), we adopt the
original hyperparameters and settings from DiGS [3] and
StEik [4] as our baselines, making only one modification:
extending the training iterations from 10k to 20k to better
learn complex shapes.

In our setup, we compute the heat loss using the impor-
tance sampling method, which combines a mixture distri-
bution of 1:1 uniform samples in [—1.5, 1.5]? and Gaussian
samples with an isotropic ¢ = 0.5. For each iteration, we
use 4,096 points for both the uniform and Gaussian sam-
ples, whereas DiGS and StEik generate 15,000 points to
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Figure 11. Marschner et al. [5] proposed a CP loss which is a
possible candidate to be a sufficient constraint. However, our 1D
experiment illustrates that it is incapable of converging to the ac-
tual signed distance function (dashed line), even when the output
minimizes this loss almost everywhere. The x axis is the domain
and the y axis shows the output of the implicit function. The mid-
dle two rows display the intermediate states of the optimization,
while the bottom row presents the final results.

compute their derivative-based loss. We fix A in the heat
loss while employing two schedulers: one for the heat loss
and another for the eikonal loss. Towards the end of train-
ing, the heat loss is gradually weakened, and the eikonal
loss is strengthened. This strategy aligns with the approach
used in DiGS and StEik. Our results are presented in Fig. 12
as well. However, as shown in the ablation study (Table 2),
removing the scheduler does not result in significant differ-
ences.

We also visualize the outcomes of the baseline methods
in Fig. 13. In the ablation study, the boundary loss coeffi-
cient remains constant and identical across all experiments,
and the same scheduler is applied to the eikonal loss. We
also adopted the original loss weight ratios from the exper-
iments of DiGS [3] in the fourth column and StEik [4] in
the seventh column. All losses, except for the eikonal loss,
are applied without a scheduler. The outputs of the origi-
nal DiGS and StEik models are also shown in the fifth and
eighth columns, respectively.

All other models make some errors in topology. Even
when their topologies are correct, details like the Target and
House shapes in the first two columns are missing. When
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Figure 12. This figure illustrates all 14 vector shapes in our 2D dataset. Each visualization lies within the range [—1.2, 1.2]2. Spanning a
spectrum from simple to complex, the dataset encompasses various topologies, smooth and irregular boundaries, as well as configurations
with single and multiple objects. Our HOTSPOT model accurately reconstructs all curves while preserving their correct topologies.

using a relatively smaller learning rate in the ablation study
for DiGS and StEik, the outputs become overly flat, despite
maintaining the same ratio among the loss weights from
their paper. This can be interpreted as a limitation of their
derivative-based losses, which, as a corollary of the eikonal
equation, only serve as a necessary condition for the equa-
tion, encouraging the condition |Vu| = ¢, where ¢ can be
any constant. With a small learning rate, their losses trap
the outputs at [Vu| = 0.

In our framework, we analyze the influence of different
values of )\ and various coefficients of the eikonal loss, with
visualizations presented in Fig. 14. This experiment repli-
cates the settings from the ablation study, except for the val-
ues of A\, w,, and the iteration number, with all schedulers
removed. To ensure full convergence, we extend the train-
ing iterations from 20k to 200k.

From Fig. 4 and Fig. 14, we observe the influence of dif-
ferent \. When A is very small, heat from the boundaries
diffuses to distant regions, causing h ~ 1 almost every-
where in the test region. As a result, u ~ 0 across the do-
main, leading to an overly flat signed distance function with

many extra boundaries. As )\ increases, the outputs become
more regular. Notably, even without the eikonal loss, set-
ting A = 10 yields outputs that are more regular than several
baselines in Fig. 13. However, as A continues to increase,
the factor e ~*1“! in the loss computation diminishes rapidly,
especially where |u| is large initially or grows during train-
ing. This makes optimization without the eikonal loss in-
creasingly challenging and less effective. For instance, in
the A = 50 and A = 100 subfigures with w, = 0, the values
in the upper-right region remain greater than 1.0 even af-
ter 200k iterations. Although our neural network provides
some output values in these regions, they are significantly
larger than the ground truth.

Incorporating the eikonal loss stabilizes the training pro-
cess and promotes a more regular field. When A is small,
the approximation from Eq. (5) is weakly achieved, but the
eikonal loss helps regulate the output and prevents it from
becoming overly flat. When A is large, the eikonal loss dom-
inates in regions where A|u| is substantial. However, if the
eikonal loss is overly strong, extra boundaries and local op-
tima may re-emerge.
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Figure 13. This figure demonstrates how the baselines fail with complex shapes. The difference between the fourth and fifth columns (from
left to right), as well as between the seventh and eighth columns, is that the former one is generated in the ablation study, while the other is
generated by the original model. Dashed lines represent the true boundaries, while the boldest line indicates the reconstructed boundaries.

This does not mean that users must carefully balance the
hyperparameters w,, wy, and A. We have found effective
ways to choose them. In our subsequent experiments, the
schedulers for A and w, ensure robust shaping capabilities
across various shapes and distance ranges in the ShapeNet
dataset [55]. Mimicking a real annealing process, we grad-
ually increase A and w,, allowing the heat loss to shape and
stretch most regions first, helping the optimization escape
local optima. As the heat field cools due to the increas-
ing absorption coefficient A, the eikonal loss maintains the
stretching and assumes control in remote regions.

B.3. ShapeNet

We show full metrics for the ShapeNet dataset in Tables 7,
8, and 9. We compare our method with the state-of-the-
art methods, including SAL [2], SIREN without normaliza-
tion [34], Neural-Singular-Hessian [45], Neural-Pull [51],
DiGS [3], and StEik [4]. Our method outperforms all other
methods in terms of surface reconstruction metrics, includ-
ing IoU, Chamfer distance, and Hausdorff distance. In
terms of distance query metrics, our method achieves near-
top performance across RMSE, MAE, and SMAPE.

Notably, in near-surface regions, our approach outper-
forms all other methods, including SAL [2] and Neural-
Singular-Hessian [45], across these metrics. As discussed in
the main text, while approximating the SDF using the clos-
est point information may be reasonably accurate for distant
regions, it proves inadequate for near-surface regions. This
limitation is particularly critical for sphere tracing—one of
the most important applications of SDF—as it heavily re-
lies on accurate field values in near-surface regions due to
the high density of queries in these areas.

In contrast, as we introduced at the end of Section 3, after
the neural network interpolates these points due to spectral
bias [58], our loss remains effective in faithfully capturing
the distance to the interpolated surface. Our experiments on
sphere tracing further substantiate this claim, demonstrating
the infeasibility of approximating the SDF using only the
closest point information and highlighting the superiority
of our proposed model.

Our test region is defined in the same way as in DiGS
and StEik. Both methods rescaled the circumscribed sphere
centered at the geometric center of a point cloud to a unit
sphere and designated the circumscribed cube [—1,1]? as
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Figure 14. Signed distance function reconstructions of the vector image House with varying values of A and we.

TIoU 1
median
0.9359

Chamfer Distance |
mean | median std
0.0055 | 0.0037 | 0.0046

Hausdorff Distance |
mean | median std
0.1267 | 0.1350 | 0.1088

std
0.2803

mean
0.7882

DiGS [3]

StEik [4]

Ours

0.6620
0.9870

0.7305
0.9888

0.3224
0.0083

0.0073
0.0014

0.0051
0.0013

0.0068
0.0003

0.1425
0.0153

0.1654
0.0150

0.1146
0.0100

Table 5. Comparison of 2D dataset reconstruction metrics.



RMSE | MAE | SMAPE |
mean | median std mean | median std mean | median std
DiGS [3] | 0.0597 | 0.0504 | 0.0511 | 0.0315 | 0.0253 | 0.0351 | 0.3363 | 0.2355 | 0.3414
StEik [4] | 0.0725 | 0.0335 | 0.0903 | 0.0419 | 0.0108 | 0.0574 | 0.4222 | 0.2223 | 0.4409
Ours 0.0199 | 0.0189 | 0.0130 | 0.0101 | 0.0072 | 0.0060 | 0.0699 | 0.0693 | 0.0226

Table 6. Comparison of 2D dataset distance queries.
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Figure 15. Additional results from the ShapeNet dataset [55]. We present the bench, where none of the methods achieves a satisfactory
surface reconstruction, and the airplane, where all methods successfully capture detailed structures.

TIoU 1 Chamfer Distance | Hausdorff Distance |
mean  median std mean  median std mean  median std
SAL [2] 0.7400 0.7796 0.2231 0.0074 0.0065 0.0048 0.0851 0.0732 0.0590
SIREN wo/n [34] 0.4874 0.4832 0.4030 0.0051 0.0038 0.0036 0.0558 0.0408 0.0511
NSH [45] 0.7293 0.9285 0.3538 0.0036 0.0033 0.0017 0.0324 0.0231 0.0286
Neural-Pull [51] 0.7300 0.7972 0.2229 0.0114 0.0073 0.0161 0.1334 0.0840 0.1287
DiGS [3] 0.9636 0.9831 0.0903 0.0031 0.0028 0.0016 0.0435 0.0168 0.0590
StEik [4] 0.9641 0.9848 0.1052 0.0032 0.0028 0.0028 0.0368 0.0172 0.0552
Ours 09796 0.9842 0.0203 0.0029 0.0028 0.0012 0.0250 0.0153 0.0360

Table 7. Surface reconstruction metrics on ShapeNet [55]. Bold and underlined data: optimal; bold only: suboptimal. Same below.

RMSE | MAE | SMAPE |
mean  median std mean  median std mean  median std
SAL [2] 0.0251 0.0197 0.0270 0.0142 0.0116 0.0108 0.1344 0.1064 0.1032
SIREN wo/ n [34] 0.5009 0.4842 0.1769 0.4261 04027 0.1811 1.2694 0.9859 0.5195
NSH [45] 0.3486  0.2469 0.2566 0.2891 0.1780 0.2508 0.7386 0.4897 0.5424
Neural-Pull [51] 0.0093 0.0067 0.0121 0.0060 0.0053 0.0042 0.0673 0.0505 0.0612
DiGS [3] 0.1194 0.1107 0.0597 0.0725 0.0644 0.0423 0.2140 0.2162 0.0935
StEik [4] 0.0387 0.0338 0.0229 0.0248 0.0222 0.0142 0.0931 0.0843 0.0748
Ours 0.0281 0.0259 0.0136 0.0176 0.0160 0.0082 0.0540 0.0514 0.0243

Table 8. Overall distance query metrics on ShapeNet [55].

their test region. We evaluate our results within the ex- To compute the IoU and ground truth distances, we uti-
act same coordinate system. During training, however, we lized the Occupancy Network [16] and a point cloud com-
rescale the point cloud to achieve an adaptive A described pletion model [57]. A dense grid was generated within

in the main text. [~1,1]3 to evaluate the metrics. For near-surface queries,



RMSE near surface | MAE near surface | SMAPE near surface |

mean median std mean median std mean median std
SAL [2] 0.0245 0.0252 0.0075 0.0182 0.0189 0.0059 0.6848 0.6890 0.2488
SIREN wo/ n [34] 0.0513 0.0401 0.0404 0.0382 0.0206 0.0351 0.8858 0.5406 0.7483
NSH [45] 0.0876  0.0798 0.0383 0.0686 0.0601 0.0342 0.8830 0.7254 0.4744
Neural-Pull [51] 0.0123  0.0098 0.0088 0.0087 0.0076 0.0047 0.3856 0.3459 0.1439
DiGS [3] 0.0152 0.0135 0.0081 0.0081 0.0074 0.0037 0.1760 0.1657 0.0660
StEik [4] 0.0147 0.0130 0.0070 0.0081 0.0074 0.0041 0.1770 0.1664 0.0859
Ours 0.0094 0.0078 0.0049 0.0047 0.0042 0.0020 0.1206 0.1163 0.0313

Table 9. Distance function query metrics for near surface region on ShapeNet [55].

we filtered points with a ground truth distance smaller than
0.1 to compute the accuracy, as presented in Table 9. Our
method demonstrates a remarkable lead, reducing losses by
more than one-third compared to the second-best model.

To illustrate the improved quality of our level sets, we
also provide sectional views from different models for com-
parison in Fig. 16.

Our level set near the surface is smoother and more reg-
ular, offering significant advantages for downstream tasks
such as sphere tracing.

B.4. Complex Topology Reconstruction

We adopt five high-genus geometries from Mehta et al. [1]
and generate 3D point clouds for them, including Bunny,
Genus6, VSphere, Dino, and Kangaroo. Additionally, we
use the mesh of VSphere to create bilayer and trilayer
VSphere, resulting in a total of seven shapes with com-
plex topologies. We compare our method with SAL [2],
DiGS [3], and StEik [4] on these shapes, presenting the
visual results in Fig. 1, Fig. 8, Fig. 17, and Fig. 18. Our
method runs for 10k iterations. To ensure sufficient con-
vergence and minimize extra boundaries, we run the other
methods for 20k iterations on Bunny, Genus6, VSphere,
Dino, and Kangaroo, and for 100k iterations on the bilayer
and trilayer VSphere. Despite the increased iterations, the
other methods fail to reconstruct the correct topology and
generate extra boundaries, whereas our method successfully
reconstructs the correct topology for all shapes.

B.5. Surface Reconstruction Benchmark (SRB)

SRB consists of 5 noisy scans, each containing point cloud
and normal data. We compare our method against the cur-
rent state-of-the-art methods on this benchmark without us-
ing the normal data. The results are presented in Table 10,
where we report the Chamfer (d¢) and Hausdorff (dg) dis-
tances between the reconstructed meshes and the ground
truth meshes.

Additionally, we provide the corresponding one-sided
distances (ds and d ) between the reconstructed meshes
and the input noisy point cloud. It is worth noting that one-

sided distances are used here to maintain consistency with
the historical choice of previous methods.

Our improvement is less pronounced compared to prior
methods, as the SRB dataset represents a relatively simple
benchmark without complex structures. Additional visual
results are provided in Fig. 19.

Compare with GT Scans
Method de dg dé d]-_i
IGR won 1.38 1633 025 296
SIREN wo n 042 767 0.08 1.42
SAL [2] 036 747 0.13 3.50

IGR+FF [49] 096 11.06 032 475
PHASE+FF [49] 022 496 0.07 1.56

DiGS [3] 019 352 0.08 1.47
StEik [4] 0.18 2.80 0.10 1.45
Ours 0.19 3.17 0.09 136

Table 10. Surface reconstruction metrics on SRB [56].

B.6. Sphere Tracing

For implementation details, we adopt the sphere tracing al-
gorithm [21], as implemented in Yariv et al.’s work [39].
For each pixel, the algorithm advances along the ray by
the signed distance function value at the current point, re-
peating this process until one of the following conditions is
satisfied: convergence, where the SDF value falls below a
threshold of 5.0 x 107°; divergence, where the ray steps
outside the unit sphere; or the maximum step limit of 30 is
reached.

For signed distance functions, we use trained models
from SAL [2], DiGS [3], StEik [4], and our proposed
method. The evaluation is conducted on five randomly
selected objects (airplane, car, watercraft, rifle, and lamp)
from ShapeNet [55]. For each object, we generate ten cam-
era poses arranged in a circular trajectory around the central
object, with a radius of 1.0 and a height of 0.5. The rendered
images have a resolution of 500 x 500 pixels.
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Figure 16. Sectional views of ShapeNet [55] signed distance function reconstruction results. Car, Lamp A, and Lamp B are shown in Fig. 9,
while Lamp C, Rifle, and Watercraft are presented in Fig. 10 and Fig. 20. By cross-verifying with them, HOTSPOT achieves reconstructions
with fewer extra boundaries, more regularized level sets, and accurate topologies.

Fig. 10 and Fig. 20 illustrate the number of steps re-
quired for each pixel until ray marching terminates under
one of the three conditions described above. Brighter pix-
els correspond to rays that are harder to converge, requir-
ing more queries, whereas our model produces relatively
darker results compared to other models. Furthermore,
the histograms for our model are more skewed to the left,
highlighting its efficiency. These observations demonstrate
that our model excels at early divergence detection in non-
intersected regions and requires fewer steps to locate the
surface in intersected regions. This efficiency stems from
the smoothness and accuracy of our signed distance func-
tion, particularly its high quality near the surface, which
significantly enhances the rendering performance of sphere
tracing.

Because Fig. 10 and Fig. 20 only visualize the compu-
tation costs, to verify the accuracy of the object shapes in
rendering, we visualize the depth and surface normals at the
intersections. For rays that do not converge within 30 iter-
ations, the intersection is approximated by identifying sign
transitions at 100 equally spaced sampling points along the

ray. The normal vector at the intersection, denoted by z,
is computed using Eq. (40) to enhance the visualization of
the geometries. Non-intersected areas are masked in white.
Fig. 21 demonstrates that our model accurately detects and
represents the object’s surface in this downstream applica-
tion, while other models show artifacts and distortions.

a(0) = YL E0L0) (40)
[V (2(6),0)ll2
These results demonstrate that in sphere tracing render-
ing, the distance query accuracy of our model effectively
guides the ray toward the object’s surface, enhancing ren-
dering efficiency. Additionally, its precision at the zero level
set ensures an accurate representation of the object.

C. Relation to PHASE [49]

While derived from very different mathematical principles
and a different motivation, our method turns out to have a
close relation to the PHASE model proposed by Lipman.
The PHASE model essentially simulates two fluids finding
equilibrium in a container by minimizing an energy func-
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Figure 17. Visualizations of Genus6, Kangaroo, and Voronoi Sphere from Mehta et al [1]. We show the number of iterations used in
training in the parentheses. We achieve excellent results with only half the iterations, successfully capturing the correct topologies.

tional. A smooth approximation of the indicator of differ-
ent fluids is involved and interpreted as an occupancy func-
tion o(x) such that o outputs 1 when outside of the object,
—1 when inside the object, and 0 when exactly on the sur-
face. Lipman further adds a reconstruction loss to encour-
age o(x) to vanish at the boundary and adapts the Van der
Waals-Cahn-Hilliard theory of phase transitions [61, 62],
resulting in the following functional to minimize:

H@zmqw+A¢WW+W@, @1)

where wy, is the weight of the reconstruction loss, £(0) is
the reconstruction loss that encourages o to be zero at the
boundary, € is a small positive constant, and W (o) is a po-
tential. Lipman showed that by choosing a double-well po-
tential W (0) = 0®—2|o|+1, the minimizer can be converted
into an approximated signed distance function s through a
log transform:

s = —+/eln (1 — |o|) sign(o). (42)

It turns out that our heat field » when optimized under
our heat loss is closely related to the regularized occupancy
function o. If we set h = 1 — |o| and A = ¢~ 2 and solve for
the screened Poisson equation (Eq. (4)), we would obtain
PHASE’s regularized occupancy.

However, there are several crucial differences between
our approach and PHASE where our theory and derivation
has led to additional insights and huge differences in imple-
mentations and results.

First, based on a theoretical framework aiming the area
minimization, PHASE’s theory promotes setting the weight
wy of the boundary loss (Eq. (2)) to wp, = €% where
o € (1, 1). However, we found that finding the exact min-
imal area is detrimental to the optimization, as discussed in
Section 3. On the contrary, according to our theory and ex-
periments, we find it necessary to maintain boundaries be-
tween points and set the weight w;, to a much higher value
to ensure the boundary condition of the screened Poisson

equation is satisfied (Eq. (4)), as states in main text.

Theorem 2 in the PHASE paper states that to achieve
minimal area, w;, should converge to 0 as € approaches an
infinitesimal value. However, this interpretation does not
align with the nature of the signed distance function re-
construction task which should complete the manifold and
connect points, as discussed at the end of Section 3, and
may lead to unintended consequences as follows: When
the boundary weight wj, is overly small, the signed distance
function values of boundary points cannot even converge to
close to 0. When the weight wy, is still not large enough,
their output collapses from a surface-based-distance signed
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Figure 18. Visualizations of bilayer and trilayer Voronoi Spheres. Beyond achieving accurate topology reconstructions, the sectional views
reveal that our level set is the only one free from chaotic and noisy interiors, ensuring meaningful representations.

Figure 19. Visualization results on the SRB dataset. From left to
right: Anchor, Daratech, DC, Garagoyle, and Lord Quas.

distance function to a point-cloud-based-distance unsigned
distance function upon reaching the target where the bound-
aries are only point clouds and the area becomes almost
zero. In contrast, our model demonstrates robust and accu-
rate performance, effectively connecting points and interpo-
lating boundaries by taking advantages of neural network’s
spectral bias [58], with a large boundary weight w;, and an
adaptive absorption A, as discussed in Section 6.

In addition to Fig. 6, we show more empirical results on
our 2D dataset supporting our claim here in the supplemen-
tary. In Table 11, we show the visual results of PHASE
on a single circle across different boundary weight choices,
and compute the surface reconstruction and distance met-
rics. We show visual results on the rest of the 2D dataset in

Fig. 23, and the mean metrics for each boundary loss weight
over the whole 2D dataset in Table 12. In these experiments,
we use eikonal loss weight 0.1, as provided in the PHASE
paper. We also show one example from ShapeNet in Fig. 22,
where we use eikonal loss weight 1.0. From our theory and
the examples above, one can clearly see that using a small
boundary loss weight is not the best strategy.

Second, we design our network to output the signed dis-
tance u directly instead of the heat h, whereas PHASE’s
model would directly output the occupancy o and convert to
signed distance. We show that this can lead to extremely nu-
merically unstable results. Consider the case where the oc-
cupancy function o outputs 1 or —1, then the log transform
(Eq. (41)) would simply output infinity or negative infinity.
The infinities can be avoided by clamping the occupancy,
but how much should we clamp?

For their proposed setting e = 0.01, only to get s = 2,
we will need to set 0 = 1 — e~29 &~ 0.9999999979, which
already is beyond what a 32-bit floating point number can
reliably represent. Rescaling the scene is unfortunately not
going to help, since the parameter e is scene dependent and
needs to be scaled accordingly.
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Figure 20. Visualization of iteration counts for each pixel and their corresponding histograms. The iteration count images are taken from
two arbitrary poses, while the histograms gather outcomes across all ten rendered poses. Brighter pixels indicate a higher number of queries
required for convergence before termination, while darker pixels signify fewer queries. The histograms clearly show that when rendering
with our output, most pixels require fewer iterations to determine the surface.
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(a) Depth maps showcasing the distance from the camera to the surface. (b) Normal maps illustrating surface orientation at each point.

Figure 21. Rendering results with sphere tracing algorithm.
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IoU 0.3288 0.3330
Chamfer  0.2244 0.2138
Hausdorff ~ 0.2315 0.2216
RMSE 0.2318 0.2209
MAE 0.2237 0.2122
SMAPE 0.9159 0.8814

0.3242
0.1955
0.1991
0.2085
0.1982
0.8404

0.2975
0.1434
0.1455
0.1740
0.1552
0.7059

0.2138
0.0777
0.0799
0.1477
0.1048
0.5333

0.0022 0.9693
0.0175 0.0080
0.1584 0.0150
0.1476 0.0481
0.0556 0.0336
0.3396 0.2028

0.9912
0.0026
0.0102
0.0681
0.0610
0.3291

0.9917
0.0025
0.0105
0.3004
0.2744
1.0863

Table 11. Comparison of PHASE results on a circle with different w;, values. The color scale is the same as in Fig. 6.

Wy 0.1 0.2 0.3 0.5 1.0 2.0 5.0 10.0  20.0
IoU 0.2026 0.1843 0.2050 0.2089 0.2505 0.2061 0.3899 0.4838 0.4696
Chamfer 0.2663 0.3122 0.2504 0.1785 0.1067 0.0499 0.0793 0.0888 0.1030
Hausdorff 0.5692 0.7001 0.5635 0.4191 0.3446 0.3747 0.4567 0.4383 0.5407
RMSE 0.4644 0.3314 0.2382 0.1606 0.1111 0.0734 0.0567 0.0747 0.1282
MAE 04332 03114 0.2265 0.1500 0.0918 0.0413 0.0405 0.0623 0.1112
SMAPE 1.2558 1.1504 1.0870 0.9475 0.8107 0.5873 0.7191 0.8877 1.1477

Table 12. Mean metrics of PHASE results with different wp values on the full 2D dataset.

In practice, we verify that when
PHASE struggles with queries that are
far away from the surfaces, and show vi-
sual examples in the inset, where the first
figure is PHASE result with e = 0.01 and
occupancy clamped at 0.99, and the sec-
ond figure is our result, which can rep-
resent arbitrary signed distance function

values.

Moreover, optimizing the occupancy
directly instead of the distance leads to

another issue when combined with the eikonal loss. When
backproping the gradient from s to o, we have:

Vs =+/e 1
1— o

Vo

P this

(43)

1||

term is multiplied as an coefficient and becomes unstable in

the optimization.
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GT mesh wp = 0.1 wp = 0.2 wp = 0.3 wp = 0.5 wp = 1.0 =35. Wy wp = 20.0

IoU 0.0000 0.0046 0.0387 0.1177 0.3106 . 0.9638 0.9020
Chamfer 0.2056 0.2055 0.1749 0.1441 0.0935 . 0.0065 0.0089
Hausdorff 0.4905 0.4909 0.4395 0.3855 0.3094 . 0.0545 0.0651
RMSE 0.8656 0.8263 0.7944 0.7505 0.6588 . 0.4275 0.4041
MAE 0.8468 0.8108 0.7769 0.7292 0.6339 . 0.3528 0.3182
SMAPE 1.5123 1.5100 1.4956 1.4608 1.3912 . 0.9778 1.0324

Figure 22. Comparison of PHASE results on a 3D cabinet with different w;, values. SDF values are visualized only on a 2D plane. The
color scale is the same as in Fig. 6.
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Figure 23. Comparison of PHASE results with different w; values on the rest of the 2D dataset. The color scale is the same as in Fig. 6.
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