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8. User Preference Evaluation Analysis
To provide a more intuitive and clear analysis of the cred-
ibility of CDM, we supplement the content in Section 5.2
with a detailed examination of user preferences for CDM
and BLEU metrics under different conditions.

To assess the reliability of CDM, we design an annota-
tion interface as shown in Figure 5. Given the ground truth
rendered image and the model’s predicted rendered image
for various samples, annotators are asked to assign an ap-
propriate score. Score A and Score B correspond to the
BLEU and CDM scores of the prediction results, but the
order is randomized so that users do not know which score
corresponds to which metric. Users make their choice based
on their intuitive judgment from four options.

A total of 1008 samples are scored, and the results are
categorized into four scenarios. We provide a detailed and
clear analysis of user preferences for CDM and BLEU met-
rics in each scenario, as illustrated in Figure 6:
CDM is better (64%): In this scenario, examples include
Case 1 and Case 2. In Case 1, the prediction result is 100%
correct, with a CDM score of 1 and a BLEU score of 0.
Users directly chose the CDM score. In Case 2, the predic-
tion result is mostly correct, but the BLEU score is signifi-
cantly lower than expected, leading users to prefer the CDM
score.
Both scores are equally good (32%): Examples in this sce-
nario include cases 3 and 4, where the CDM and BLEU
scores are relatively close, both reflecting the proportion of
model prediction errors in an accurate and intuitive manner.
BLEU is better (3%): In Case 5, due to different token rep-
resentations of ”BF”, BLEU detects inconsistencies, while
CDM considers BF and BF as the same token.
Neither score is good (1%): In Case 6, although the two
formulas contain different tokens, "\mathcal{E}" and
"\varepsilon", they render similar images (E and ω).
Both CDM and BLEU fail in this case.

CDM is reliable in 96% of cases. The remaining 4%
are due to LaTeX issues, which will be optimized in future
versions, with minimal impact on the overall evaluation.

8.1. Latex Rendering and Syntax Errors
CDM relies on normalizing LaTeX source code and render-
ing images. Therefore, code that cannot be rendered or con-
tains syntax errors (which cannot be normalized) will result
in computation failures. For example, the expression "z

= \left( \begin{array}{cc} x \\ y" is a fail-
ure case due to a missing "\end{array}", leading to ren-

dering failure. For these cases, CDM assigns a score of 0.
Although CDM cannot directly handle them, this approach
is reasonable and aligns well with human perception.

The number of LaTeX rendering and syntax errors de-
pends on the quality of the model’s prediction. Among the
four models, Pix2tex, Texify, Mathpix, and UniMERNet,
the proportion of LaTeX rendering and syntax errors in the
predicted results on the UniMER-Test is 13.83%, 5.03%,
2.38%, and 1.05%, respectively.

8.2. Rendering Types Affecting Token Consistency
CDM defines characters without considering rendering
styles. However, different rendering styles can produce vi-
sually distinct results, potentially causing different tokens
to render into nearly identical characters(Figure 6 Case6),
or same tokens to render into different characters(Figure 6
Case5). Similar situations include "G" and "\mathcal
{ G }", "\mathcal { X }" and "\mathfrac { X

}", whose rendering effects are G,G,X ,X, respectively.
This inconsistency can confuse the token consistency check,
leading to errors in the model’s output.

9. In-Depth Methodology for Evaluating Tiny-
Doc-Math

9.1. Construction of Tiny-Doc-Math Dataset
The evaluation dataset is constructed primarily from arXiv
papers in the fields of mathematics and computer science,
published after June 2024. We manually select a batch of
these papers and download the LaTeX source code and cor-
responding PDFs. Using regular expressions, we match the
formulas displayed from the LaTeX source. After individ-
ual formula rendering and manual verification, the Tiny-
Doc-Math validation set is built, comprising 12 papers, 196
pages, and a total of 437 formulas.

9.2. Formula-Level Evaluation Methodology
Once the evaluation dataset is constructed, we extract
mathematical formulas from the LaTeX source code.
Since LaTeX sources may contain custom commands
and comments from authors, we apply a series of pre-
processing steps to ensure accurate extraction. First, we
remove comments from the LaTeX source using regular
expressions (including "%", "\iffalse... \fi",
and "\begin{comment}...\end{comment}").
Next, we convert aliases defined by commands such as
"\newcommand{}{}", "\renewcommand{}{}",
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Figure 6. Examples of different human preferences (CDM, BLEU, Both (credible), Neither (credible)). Case 5 and Case 6 highlight
some erroneous instances of CDM. In Case 5, CDM overlooks differences in character rendering styles, treating "\mathfrac{BF}" as
identical to "\mathrm{BF}", despite their visual differences. Conversely, in Case 6, CDM distinguishes between "\mathcal{E}" and
"\varepsilon", although they render similarly to human perception.

"\DeclareMathOperator{}{}",
"\DeclareMathOperator*{}{}", "\def\...{}",
and "\DeclareRobustCommand{}{}" to their original
forms to ensure successful formula rendering. We then
remove content before "\begin{document}" to avoid
matching irrelevant information. After preprocessing, we
extract displayed mathematical formulas from the LaTeX

source using a series of regular expressions, as shown in
Figure 7(a). For each paper, the matched mathematical
formulas are written to a text file, one formula per line.

We render the extracted GT mathematical formulas to
obtain formula-level GT images, which are then used as in-
puts for Mathpix, UniMerNet, pix2tex, and GPT-4o to gen-
erate corresponding predictions. Finally, we compute met-



rics such as BLEU and CDM after matching the predictions
with the GTs.

9.3. Document-Level Evaluation Methodology
We convert PDF pages to images and use these images as
inputs for Mathpix and GPT-4o to generate corresponding
predictions, while Nougat takes the whole PDF as input.
After obtaining the document-level predictions, we used ex-
traction algorithms to extract displayed formulas from the
predictions, and match them with the GT formulas obtained
in the previous section to compute BLEU and CDM met-
rics.

Due to the different syntax formats of the outputs from
different models, we use different regular expressions to ex-
tract formulas for each model, as shown in Figure 7(b), (c),
and (d). Similarly, for each PDF, the matched mathematical
formulas from each model’s predictions are written to a text
file, one formula per line.

9.4. Matching and Metric Computation
After obtaining the GTs and predicted mathematical
formulas, we match the GTs with the predicted formulas
line by line to compute the final CDM metric. Given the
high accuracy of displayed formula predictions, we use edit
distance as the metric for matching formulas. To account
for different math delimiters used by different models
(e.g., "\begin{equation}...\end{equation}"
vs. "\[...\]" ), we remove all math delimiters before
matching, focusing solely on the content. Labels and tags
are also removed from the formulas.

The matching process consists of two rounds. In the
first round, we set a low edit distance threshold for precise
matching. This means that only predictions with a high sim-
ilarity to the ground truth formula will be matched. We it-
erate through the GT formulas, calculating the edit distance
with all predicted results. The prediction with a minimum
edit distance is recorded as matched only if the minimum
edit distance was below the threshold. If not, we skip the
line and mark both the GT and the prediction as unmatched.
In the second round, we set a higher threshold to account for
those matching cases where the edit distance might be large.
We iterate through the unmatched GT formulas, calculate
the edit distance with the remaining unmatched predicted
formulas, and record matches if the distance is below the
threshold. If any predicted formulas remain unmatched af-
ter the first two rounds, we mark them as incorrect or redun-
dant predictions and append them to the end of the matched
results.

Through practical implementation, we find that setting
the first-round threshold to 0.4 and the second-round thresh-
old to 0.8 provides the most reasonable matching. Although
extreme cases might occur where the rendered results are
identical but fail to match due to large edit distances, these

instances are not common and have been manually cor-
rected.

After matching the GTs and predicted formulas, we com-
pute metrics such as BLEU and CDM.

9.5. Result Discussion
As shown in Figure 8, GPT-4o’s document-level predictions
exhibited a significant number of CDM scores between 0.6
and 0.9, primarily due to hallucination phenomena in large
models. For example, as shown in Figure 9(a), GPT-4o gen-
erates structurally similar but content-irrelevant results. Ad-
ditionally, as shown in Figure 9(b), GPT-4o’s predictions of-
ten lack standardized formatting, i.e., frequently generating
formulas without math delimiters, leading to extraction and
rendering failures and resulting in many CDM=0 cases. For
Mathpix, although the CDM between the document level
and formula level is close, the proportion of CDM=1 pre-
dictions at the formula level is significantly lower. This is
mainly due to the lack of commas in Mathpix’s single for-
mula predictions, as shown in Figure 9(c). Nougat’s predic-
tions often contain syntax errors, as shown in Figure 9(d),
leading to rendering failures and CDM=0 cases. Moreover,
Nougat’s predictions sometimes leave several pages in the
middle of the PDF with no prediction results, resulting in
missing formulas in the final output.



(a) GT-LaTeX

display_pattern = re.compile(
  r'\\begin{equation\*?}(.*?)\\end{equation\*?}|'
  r'\\begin{align\*?}(.*?)\\end{align\*?}|'
  r'\\begin{gather\*?}(.*?)\\end{gather\*?}|'
  r'\\begin{eqnarray\*?}(.*?)\\end{eqnarray\*?}|'
  r'\$\$(.*?)\$\$|'
  r'\\\[(.*?)\\\]',
  re.DOTALL)

(b) GPT4o 

display_pattern = re.compile(
  r'\\begin{equation\*?}(.*?)\\end{equation\*?}|'
  r'\\begin{align\*?}(.*?)\\end{align\*?}|'
  r'\\begin{gather\*?}(.*?)\\end{gather\*?}|'
  r'\\begin{eqnarray\*?}(.*?)\\end{eqnarray\*?}|'
  r'\$\$(.*?)\$\$|'
  r'\\\[(.*?)\\\]',
  re.DOTALL)

(c) Mathpix (d) Nougat 

display_pattern = re.compile(
 r'(\\\[.*?\\\])', re.DOTALL)

display_pattern = re.compile(
 r'(\\\[.*?\\\])', re.DOTALL)

GT Correct Pred Nearly Correct Pred Wrong Pred

Step 1: Extract Formula by Regular Expression Step 2: Matching

Figure 7. Detailed Process of Document-Level Evaluation.
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Figure 8. The CDM range percentage and CDM score of each model. “F” indicate Formula-Level, “D” indicate Document-Level.

(c) Mathpix-Formula CDM:0.979

CDM:0.602(a) GPT4o-Doc Unextracted(b) GPT4o-Doc

\[\int_{\mathcal{X}_{1}}\varphi(x_{1})T_{\#}\mu_{0}(\
mathrm{d}x_{1})=\int_{ \mathcal{X}_{0}}\varphi\big{(}T
(x_{0})\big{)}\mu_{0}(\mathrm{d}x_{0}).\]

Render Failed

(d) Nougat-Doc CDM:0
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M = ![(A & B \\ C & D) = (0 & I \\ -I & 0) ], 
where I = ![1 & 0 \\ 0 & 1 ]. (17)Empty

Figure 9. Examples of common prediction errors in GPT-4o, Mathpix, and Nougat.



Figure 10. CDM metrics on four UniMER-Test subsets (SPE, CPE, SCE, HWE) for models trained with varying amounts of data (10%,
20%, ..., 100%) and models trained using two rounds of hard case selection. The scatter plot shows performance improvements with
increasing training data and the efficiency of hard case selection.
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Figure 11. Examples of formula recognition evaluation using image edit distance and MSE. Case 1: Correct prediction with zero Editdist
and MSE. Case 2: Missing one ω causing all subsequent positions to mismatch. Case 3: Correct formula content but an extra newline
character causing significant image difference.



10. Efficient Data Selection for Formula
Recognition

Current formula recognition methods often overlook the im-
portance of sample selection during training. We demon-
strate that by utilizing the CDM metric for training data se-
lection, it is possible to achieve performance comparable to
using the entire dataset while only utilizing less than 20%
of the data. We conduct the following experiment: First,
we randomly split the UniMER-1M dataset into ten equal
parts. We then train the model using 10%, 20%, up to 100%
of the data and observe the model’s performance with vary-
ing amounts of training data. As shown by the blue points
in Figure 10, the model’s performance generally improves
as the amount of training data increases. Notably, with just
10% (106,179 samples) of the data, the model achieves sat-
isfactory performance, accurately predicting most formulas.
This suggests that the remaining 90% of the data may be
largely redundant for training purposes.

To further investigate, we perform two rounds of hard
case data selection. First, we use the model trained on 10%
of the data to identify samples with CDM →= 1 from the re-
maining 90%. We find 76,026 such samples, which is less
than 8% of the remaining data, indicating that over 90% of
the formulas can be accurately predicted. Combining these
with the initial 10% random data, we have a total of 182,205
samples (17.16% of the UniMER-1M dataset). As shown in
Figure 10, the model trained on this combined dataset per-
forms comparably to the model trained on the full dataset,
except for a slight underperformance on the SCE subset.

Next, we use this model to further select hard cases from
the remaining data, identifying an additional 9,734 samples,
representing about 1% of the remaining data. This brings
the total to 191,939 samples (18.08% of the full dataset).
The performance of this model shows a slight improvement
over the previous round, achieving results comparable to or
even exceeding those of the model trained on the full dataset
across various subsets.

This experiment demonstrates the effectiveness of using
CDM for hard case selection in formula recognition. Train-
ing based on hard case mining can serve as an efficient
method to enhance model performance. This approach al-
lows for the expansion of training data by selecting only
the necessary samples, eliminating the need to use the en-
tire dataset. Future formula recognition datasets can be ex-
panded using this method, focusing on the most challenging
samples to improve model accuracy and efficiency.

11. Evaluation Method Based on Image Differ-
ences

Previous work [32] mentions using image-based difference
methods for evaluating formula recognition results, but a
thorough analysis of the limitations of this approach is

needed. To further assess the effectiveness of these meth-
ods, we conduct experiments using both image edit distance
(Editdist) and Mean Squared Error (MSE) of image differ-
ences. As shown in Figure 11, Case 1 demonstrates that
when the model’s prediction is correct and the rendered out-
put perfectly matches the ground truth (GT), both EditDist
and MSE are zero, indicating an accurate formula. How-
ever, in Case 2, where the prediction misses the character
ε, the image-based difference method flags all subsequent
positions as mismatched, even though only one character is
missing. A more severe example is illustrated in Case 3,
where the predicted formula content is correct but an ex-
tra newline character is predicted, leading to a significant
image difference. In this case, both EditDist and MSE are
non-zero and fail to reflect the error accurately. This high-
lights the necessity of the proposed CDM metric.

12. Latest UniMERNet performance
Table 2 shows how UniMERNet [30] compares to other
models. It was recently updated with three model weights
of different sizes, which we re-evaluated, and the results are
shown in Table 4.



Method SPE CPE HWE SCE
CDM ↑ ExpRate@CDM ↑ CDM ↑ ExpRate@CDM ↑ CDM ↑ ExpRate@CDM ↑ CDM ↑ ExpRate@CDM ↑

Pix2tex 0.9619 0.7240 0.6489 0.0705 0.2453 0.0060 0.6762 0.3284
Texify 0.9852 0.9104 0.7041 0.2821 0.5269 0.2359 0.7932 0.5132
Mathpix 0.9729 0.4400 0.9671 0.288 0.9318 0.5928 0.9238 0.7233

UniMERNet-tiny 0.9910 0.9232 0.9491 0.6988 0.9328 0.6186 0.9384 0.7655
UniMERNet-small 0.9906 0.9335 0.9588 0.7767 0.9370 0.6393 0.9406 0.7693
UniMERNet-base 0.9914 0.9329 0.9595 0.8046 0.9400 0.6431 0.9373 0.7697

Table 4. Newest UniMER-Test subset evaluation results
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