
Appendix
This appendix is organized as follows:

• Section A.1 gives the basic theory of spherical interpo-
lation and the derived spherical extrapolation. Then we
provide proof that the circle interpolation result of two
DDIM inversions is approximately standard normal dis-
tribution.

• Section A.2 provides details of the comparison meth-
ods (cf ., Section 4), including Mixup [17], CutMix [16],
Real-Filter [3], Real-Guidance [3], Da-Fusion [14], Real-
Mix [15], Diff-AUG [15], Diff-Mix [15], CMO [11] and
CMO+DRW [2].

• Section A.3 provides some quantitative and qualita-
tive analyses to support our main claim: current Intra-
category DA [14] and Inter-category DA [15] can not take
account of both faithfulness and diversity well.

• Section A.4 gives the implementation details of our Diff-
II and the reproduction details of the comparison meth-
ods. Besides, we also give the computation cost of our
Diff-II.

• Section A.5 gives some background about Diffusion,
DDIM, and DDIM inversion.

• Section A.6 shows additional results of experiments.
First, we give the suffixes and predefined metaclasses of
each dataset in Section A.6.1 and Section A.6.2 respec-
tively. Then, we give the more ablation results of the
key components and split ratio (cf ., Section 3.3) in Sec-
tion A.6.3. Finally, we give additional visualizations in
Section A.6.4.

A.1. Theory of Spherical Interpolation

Spherical interpolation is a method used to interpolate be-
tween two points on a sphere or in a spherical space. The
main idea behind spherical interpolation is to find a point
along the shortest path on the sphere’s surface between
two given points. The theory of spherical interpolation is
grounded in spherical geometry and quaternion algebra as
follows:
Shortest Path on Sphere: The shortest path between two
points on the surface of a sphere is along the great circle
that passes through both points. A great circle is any circle
that divides the sphere into two equal hemispheres, like the
equator or the meridians on a globe.
Interpolation Formula: Given two points on a sphere, rep-
resented by unit vectors A and B, and an interpolation pa-
rameter t ∈ [0, 1], spherical interpolation calculates a third
point P along the great circle from A to B using the for-
mula:

P =
sin((1− t)θ)A+ sin(tθ)B

sin(θ)
, (A1)

where θ is the angle between A and B, found using the dot
product cos(θ) = A ·B.

Quaternion Interpolation: When dealing with rotations in
computer graphics, spherical interpolation can be applied
using quaternions. Quaternions provide a way to represent
orientations and rotations in three dimensions without the
singularity and ambiguity problems of Euler angles. The
interpolation of two quaternions q1 and q2 is given by:

q =
sin((1− t)θ)q1 + sin(tθ)q2

sin(θ)
, (A2)

where θ is the angle between the quaternions, computed
as cos(θ) = Re(q∗1q2) (with q∗1 being the conjugate of q1).
Spherical interpolation can smoothly interpolate rotations
and directions, ensuring that the interpolated values remain
on the sphere, and thus maintaining the integrity of the ro-
tations or directional data.

Based on the above, we can easily derive the spherical
interpolation Z between two vectors (Ia and Ib) of the same
length:

Z =
sin((1− λ)α)

sin(α)
Ia +

sin(αλ)

sin(α)
Ib, λ ∈ [0, 1], (A3)

where λ is the interpolation strength, α =

arccos(
IT
a Ib

(||Ia||||Ib||)) and Z is the final interpolation
result. Then we generalize to spherical extrapolation:

Z =
sin((1 + λ)α)

sin(α)
Ia − sin(αλ)

sin(α)
Ib, λ ∈ [0,

2π

α
− 1]

(A4)
Spherical extrapolation can expand the trajectory along

the interpolation trajectory, increasing the interpolation
range while still maintaining the integrity. Based on the pe-
riodicity of trigonometric functions, we can merge spherical
interpolation and extrapolation into circle interpolation:

Z =
sin((1 + λ)α)

sin(α)
Ia − sin(αλ)

sin(α)
Ib, λ ∈ [0,

2π

α
] (A5)

Then we give the proof that the circle interpolation of
two DDIM inversions is approximately standard normal dis-
tribution.

First, we consider that Ia and Ib are two DDIM inver-
sions, which are approximately in standard normal distribu-
tion:

Ia ∼ N(µa, σ
2
a), µa ≃ 0, σa ≃ 1 (A6)

Ib ∼ N(µb, σ
2
b ), µb ≃ 0, σb ≃ 1 (A7)

According to the superposition of normal distribution, we
can get the distribution of Z:

Z ∼ N(
sin((1 + λ)α)

sin(α)
µa − sin(αλ)

sin(α)
µb,

(
sin((1 + λ)α)

sin(α)
)2σ2

a + (
sin(αλ)

sin(α)
)2σ2

b )

(A8)

For the mean term of Eq. (A8):

sin((1 + λ)α)

sin(α)
µa − sin(αλ)

sin(α)
µb ≃ 0 (A9)



For the variance term, the α ≃ π/2 due to Ia and Ib are
two independent high-dimension vectors. Thus, sinα ≃ 1
and cosα ≃ 0. Then, we can simplify the variance term:

(
sin((1 + λ)α)

sin(α)
)2σ2

a + (
sin(αλ)

sin(α)
)2σ2

b

≃sin2((1 + λ)α) + sin2(αλ)

=sin2(α+ αλ) + sin2(αλ)

=(sin(α)cos(αλ) + cos(α)sin(αλ))2 + (sin(αλ))2

≃cos2(αλ) + sin2(αλ) = 1

(A10)

Thus,
Z ∼ N(µ, σ2), µ ≃ 0, σ ≃ 1 (A11)

Proof completed.

A.2. Comparison Methods
In this section, we introduce all the comparison methods of
experiments.
Conventional Data Augmentation Methods:
• Mixup [17]: Conduct linear interpolation on the RGB

space between two images. The interpolation strength
will decide the soft label of the mixed image.

• CutMix [16]: Mix two images into one mixed image in
this way: randomly generate a cropping box, crop the
corresponding position of one image, and then use the
corresponding position of another mage to put it into the
cropped area to form a new sample. The crop size ratio
will decide the soft label of the mixed image.

Diffusion-based Data Augmentation Methods:
• Real-Filter [3]: Directly generate some synthetic images

with prompts containing their corresponding category la-
bels. Then, leverage a pre-trained perception network to
extract the features of both images of the original training
set and synthetic images. Finally, filter all the synthetic
images that are far from images of the original training
set and only maintain those that are closed to the original
training images.

• Real-Guidance [3]: Given an image from the original
training set, add T timesteps noise to the image and use
the noised one to replace the random noise at the begin-
ning of the generation. Finally, denoise it with a prompt
containing its category label.

• Da-Fusion [14]: Firstly, set a few learnable token em-
beddings to learn an accurate concept for each category
with the original training set. Then for a given image
of the original training set, add random timesteps noise
and denoise the noised image with a prompt containing
its learned category concept.

• Real-Mix [15]: Given an image from the original train-
ing set, add random timesteps noise to the image. Then
denoise the noised image with a prompt containing other-
category labels. This will lead to a synthetic image with

Methods CLIP Score (↑) LPIPS (↑) Acc (↑)
Da-Fusion [14] 30.47 31.3% -2.65
Diff-Mix [15] - 59.3% -4.02

Ours 30.60 52.7% +5.52

Table A1. Quantitative analyses of diversity and faithfulness.

intermediate semantics between the two categories. De-
sign a calculation mechanism to decide the soft label for
this synthetic image.

• Diff-AUG [15]: Firstly, set a few learnable token embed-
dings and insert some learnable low-rank matrixes into
the U-Net to learn an accurate concept for each category
with the original training set. Then for a given image, add
T timesteps noise and denoise with a prompt containing
its learned category concept.

• Diff-Mix [15]: Firstly, set a few learnable token embed-
dings and insert some learnable low-rank matrixes into
the U-Net to learn an accurate concept for each category
with the original training set. Then for a given image, add
random timesteps noise and denoise with a prompt con-
taining learned other-category concepts. This will lead to
a synthetic image with intermediate semantics between
the two categories. Design a calculation mechanism to
decide the soft label for this synthetic image.

Long-tail Classification Methods:
• CMO [11]: To balance the number of different cate-

gories’s training samples. CMO crops the objects from
the rare-category images and pastes them to rich-category
images to get some new images with rare-category ob-
jects and rich-category images’ backgrounds. These new
images will be used to expand the rare-category images.

• CMO+DRW [2]: Except on oversampling-based CMO,
DRW gives different weights to the loss of different cat-
egories. Specifically, the rare categories get a large loss
weight while rich categories get a smaller loss weight.

A.3. Analyses of Diversity and Faithfulness

A.3.1. Quantitative Analyses
We investigated the synthetic set of 5-shot Aircraft (same
setting as Sec. 4.1 with ResNet) and reported: CLIP
Score [4] of the synthetic set; average LPIPS [19] be-
tween images of the synthetic set, and classification accu-
racy. The CLIP score can reflect the faithfulness of the
synthetic set while the LPIPS can indicate the diversity. As
shown in A1, we compared with two typical methods: Da-
Fusion [14] and Diff-Mix [15] which is Intra-category DA
and Inter-category DA of Figure 2 respectively.

We can see that Da-Fusion had a decent CLIP Score,
which means good faithfulness. However, its LPIPS is quite
low, indicating low diversity. For Diff-Mix, although its di-
versity is quite outstanding, faithfulness can not be guaran-



teed since the soft labels are quite difficult to decide, boot-
strapping a bad classification accuracy. Thus, we can con-
clude that current Intra-category DA and Inter-category DA
methods can not take account of both faithfulness and di-
versity well.

A.3.2. Qualitative Analyses
As shown in Figure 1: (a) is the synthetic images of Da-
Fusion [14], (b) is Diff-Mix [15] and (c) is our Diff-II. We
can get an intuitive perception that Da-Fusion and Diff-Mix
can not take account of both faithfulness and diversity well.
In comparison, our Diff-II can generate both faithful and
diverse images.

A.4. Implementation Details
In this section, we give all the implementation details of our
Diff-II and reproduction details of comparison methods.
Details of Our Diff-II:
• Category concept learning: We follow the implementa-

tions of [15]1.
• Inversion interpolation: We use DDIM inversion [12]

with 25 steps and 1.0 guidance scale [5] to calculate the
inversion for each image. Then for each category, we ran-
domly sample inversion pairs until the number of inver-
sion pairs reaches five times the number of samples in the
original training set. After that, we conduct circle interpo-
lation on these pairs with random strength λ ∈ [0, 2π/α]
(cf ., Section 3.2.2).

• Two-stage denosing: We used BLIP-caption [7] to get
captions of all images. Then, we used GPT-4-turbo [1]
to summarize the captions into suffixes with the prompt:
“I have a set of image captions that I want to summa-
rize into objective descriptions that describe the scenes,
actions, camera pose, zoom, and other image qualities
present.
My captions are: {captions}
I want the output to be a <= 10 of captions that describe
a unique setting, of the form {prefix}.
Here are 3 examples of what I want the output to look
like:
- {prefix} standing on a branch.
- {prefix} flying in the sky with the Austin skyline in the
background.
- {prefix} playing in a river at night.
Based on the above captions, the output should be:”
Then, for each denoising, we randomly sampled a suffix
for the first stage. For 5-shot classification, the split ratio
was 0.3; for the 10-shot classification, the split ratio was
0.1; for the long-tail classification, the split ratio was 1.0.
For the sample, we used the DDIM sampler with 25 steps
and 7.5 guidance scale.

1https://github.com/Zhicaiwww/Diff-Mix

Details of Comparison Methods: For few-shot classifica-
tion, we followed the reproduction implementations (i.e.,
the timesteps of adding noise) of [15]. The translation
strengths of Real-Guidance, Real-Mix, Da-Fusion, Diff-
AUG, and Diff-Mix are 0.1, random one of [0.5, 0.7, 0.9],
random one of [0.25, 0.5, 0.75, 1.0], 1.0, and random one of
[0.5, 0.7, 0.9]. For CutMix [16] and Mixup [17], the weight
decay is 1e-5, and the mixup ratios are set to 0.1 and 0.3,
respectively. For long-tail classification, we directly report
the results from [15].
Details of Classifier Training: For fairness, we used 0.5
as the replacement probability for all methods. Besides, we
followed [15] for other settings and hyperparameters.
Hardware: All experiments are conducted on 8 NVIDIA
GeForce RTX 3090 GPUs.
Computation Cost: For our Diff-II, the main computation
cost is related to the number of synthetic images. Thus, con-
sider generating one image: The interpolation calculations
are very simple and cheap, which can be ignored. The two-
stage denoising process just uses different prompts in two
stages and does not need extra time steps. Consequently,
compared with naive text-2-image generation, our Diff-II
has almost the same time complexity. Specifically, it takes
9 seconds to generate one augmentation image on a single
NVIDIA GeForce RTX 3090 GPU.

A.5. Background of Diffusion and DDIM In-
version

A.5.1. Diffusion
The recent surge of visual generation benefits from Diffu-
sion models [6, 13], and high-quality images and videos
are generated by sampling from Gaussian noises. Mean-
while, the downstream tasks include editing [10, 18], com-
posing [8], and erasing [9] are also frequently researched.

A.5.2. DDIM
Denoising Diffusion Implicit Models (DDIM) [12] are a
class of generative models that extend Denoising Diffu-
sion Probabilistic Models (DDPM) by introducing a non-
Markovian diffusion process. This results in a deterministic
mapping between the latent variables and the data, allowing
for faster sampling without compromising sample quality.

The DDIM sampling process is defined by the following
iterative update rule:

xt−1 =
√
ᾱt−1(

xt −
√
1− ᾱtϵθ(xt, c, t)√

ᾱt

)

+
√

1− ᾱt−1ϵθ(xt, c, t),

(A12)

where xt denotes the latent variable at time step t, αt

is the noise schedule parameter, ϵθ(xt, c, t) represents the
noise predicted by the model at time t.



This formulation allows DDIM to generate samples in
fewer steps compared to traditional diffusion models.

A.5.3. DDIM Inversion
DDIM inversion refers to the process of mapping a data
sample x0 back to its corresponding latent representation
xT through the reverse diffusion process. This is particu-
larly useful for tasks like image editing and interpolation in
the latent space.

The inversion process employs the following update
equation in reverse:

xt ≃
√
ᾱt

(
√
ᾱt − 1)

(xt−1 −
√

1− ᾱt−1ϵθ(xt−1, c, t))

+
√
1− ᾱtϵθ(xt−1, c, t)

(A13)

starting from t = 0 up to t = T . By iteratively applying
this equation, we can recover the latent code xT correspond-
ing to the original data sample x0.

A.6. Additional results
A.6.1. Suffixes
The suffixes of each dataset are listed as follows:
5-shot CUB:
• standing on a tree branch.
• flying around flowers.
• standing on a post by the water.
• flying over water.
• standing on the ground.
• swimming in the water.
• sitting on a rock with a blue sky.
• perched on a branch in a tree.
• flying over water with wings spread.
• perched on a tree branch.
10-shot CUB:
• flying over water.
• standing on the ground.
• sitting on a rock.
• swimming in water.
• sitting on a bird feeder.
• standing on the beach near water.
• perched on a wire with a blue sky in the background.
• standing on a branch with tall grass in the background.
• flying in the sky with its wings spread.
5-shot Car:
• parked on a city street.
• on a white background.
• parked in a lot with green trees in the background.
• parked on a gravel road with mountains in the back-

ground.
• driving down a tree-lined road.
• parked on a black floor.

• with its doors open.
• charging at a station.
• driving on a racing track.
10-shot Car:
• parked on a road.
• parked on a gravel road.
• parked with trees in the background.
• driving down a forested road.
• driving on a dirt road in desert area.
• on display at a show.
• driving on a city street.
• parked in a garage.
• parked in front of a store with other cars.
5-shot Aircraft:
• parked on the runway.
• flying in the sky with the landing gear down.
• landing with another plane in the background.
• on the runway at an airport.
• on the tarmac with mountains in the background.
• flying in the air with the landing gear down.
• parked in a hangar with the door open.
• flying in the sky with palm trees in the background.
• flying in the sky against a blue background.
• lined up on the runway at the airport.
10-shot Aircraft:
• flying in the sky with landing gear down.
• taking off from the airport with a city in the background.
• at the tarmac of an airport with a building in the back-

ground.
• with passengers, flying in the sky.
• propeller plane on a runway, with a Honeywell sign in the

background.
• airplane where workers are seen working on it in a hangar.
• plane with a green stripe on the runway.
• with people on board, floating in water.
• with a red cross on its tail and landing gear.
• jet on the runway with smoke coming out of it.
5-shot Pet:
• lying on a pillow on the floor.
• playing with a toy on the floor.
• in the grass, looking at the camera with a leash.
• on a window sill looking out.
• sitting on a couch with a stuffed animal.
• on a rock beside a person.
• running in the grass with a frisbee.
10-shot Pet:
• laying down in the grass.
• sitting on brown leather furniture.
• sitting on a couch with a dark background.
• playing with a ball in the grass.
• sitting on a windowsill, looking outdoors.
• standing on a wooden deck.
• sitting inside a cage.



• sitting on a chair with its mouth open.
• laying on a couch with a white background.
CUB-LT/IF=10:
• flying over the ocean.
• sitting on a rock by the water.
• standing in the grass.
• flying in the sky with its wings spread.
• swimming in the water.
• standing on a sandy beach.
• sitting on a wire fence.
• perched on a bird feeder in the snow.
• standing on a tree stump.
CUB-LT/IF=20:
• sitting on a rock in the water.
• perched on a branch in a tree.
• standing on the ground in the grass.
• sitting on a post by the water.
• standing on a ledge near the water.
• flying in the sky with its wings spread.
• sitting on a branch with a blurred background.
CUB-LT/IF=100:
• flying in the sky with its wings spread.
• standing on the ground in the dirt.
• sitting on a branch of a tree.
• swimming in the water.
• perched on a hand in a grassy field.
• standing on the shore of the water.
• sitting on a branch of a tree.
• sitting on a ledge by water.
• standing in the water with its reflection.
Flower-LT/IF=10:
• with water droplets on it.
• growing in a garden.
• in a close-up view.
• with a bee on it.
• in front of a water body.
• against a brick wall.
• with a butterfly on it.
• with mixed colors in a bush.
Flower-LT/IF=20:
• close-up with a dark background.
• blooming in a garden.
• growing in a pot.
• floating on water in a pond.
• arranged on a table.
• with a bee on it in the garden.
• on a tree.
• in a field with a rocky surface.
• against a blue sky.
• with a blurry background in a field.
Flower-LT/IF=100:
• with water droplets on it.
• growing in a garden.
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Figure A1. Classification accuracy for different split ratios. Except
for the split ratio, all other settings and hyperparameters are the
same with 5-shot CUB classification with ResNet50.

II TD CLIP Score (↑) LPIPS (↑) Acc (↑)
30.73 47.9% +2.11

✓ 30.65 51.5% +3.86
✓ 30.63 50.0% +4.15

✓ ✓ 30.60 52.7% +5.52

Table A2. Components Ablation. “II” is Inversion Interpolation
and “TD” is Two-stage Denosing. “Acc” is the increase relative to
no DA.

• in a close-up view.
• with a bee on it.
• in front of a water body.
• against a brick wall.
• with a butterfly on it.
• with mixed colors in a bush.

A.6.2. Prefdefined Metaclasses
We list the metaclass of each dataset here: CUB→“bird”,
Aircraft→“aircraft”, Cars→“car”, Pet→“animal”, CUB-
LT→“bird”, Flower-LT→“flower”.

A.6.3. More Ablation Results
Components: We ablated our key components: Inversion
Interpolation (II) and Two-stage Denoising (TD). We inves-
tigated the synthetic set of 5-shot Aircraft (same setting as
Sec. 4.1 with ResNet) and reported: CLIP Score [4] of
the synthetic set; average LPIPS [19] between images of
the synthetic set, and classification accuracy. The CLIP
score can reflect the faithfulness of the synthetic set while
the LPIPS can indicate the diversity. As shown in Table 4,
the first row (w/o both II and TD) directly denoise a random
noise with a prompt without suffix in one stage(cf ., Sec.
3.3). We can see that: independently adding II or adding
TD both can increase the LPIPS while nearly maintaining
the CLIP Score. After adding both components together,
the LPIPS further increased. This indicates that each com-
ponent can significantly benefit the diversity with negligible
harm to faithfulness, thus boosting higher accuracies. Then
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Figure A2. Synthetic images regarding different interpolation strengths (The unit is 2π/α).

we provide some explanations why starting with an inter-
polation result (the second row in Table A2) is better than
a random noise (the first row in Table A2): Interpolation
can not only sample some points in latent space that are not
easy to sampled by standard normal distribution, but also
the relative distance between these points will not be too
close. This ensures the improvement of diversity. Besides,
according to the characteristics of circle interpolation, these
points are in the position with relatively dense semantics of
the pre-trained diffusion model, thus ensuring faithfulness.
Therefore, the inversion interpolation results tend to gener-
ate more diverse samples than random Gaussian noise and
can finally bootstrap better classification results.
Split Ratio We ablated the split ratio s ∈ [0, 1] in Fig-
ure A1. we can see that: the value of s will influence fi-
nal classification accuracy. We get the best balance (when
s = 0.3) between faithfulness and diversity.

A.6.4. Additional Visualizations
Visualizations across Different Interpolation Strength λ:
As shown in Figure A2, we give our synthetic images re-
garding different interpolation strengths (cf ., Sec. 3.2.2).
We can see that our Diff-II can generate samples with new
context while maintaining the category concept characteris-
tics. The interpolation strengths λ can control the relative
similarity between the synthetic sample and two samples of
interpolation pair.
Synthetic Images in Few-shot and Long-tail Classifica-
tion: we gave more synthetic images of our Diff-II used
in few-shot and long-tail classification (cf ., Figure A3).
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Figure A3. More synthetic images of our Diff-II in few-shot and long-tail classification.
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