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1. Overview

This supplementary material offers further insights into the
details and strengths of our method. Further details on the
training process are provided in Sec. 2, computational anal-
ysis is discussed in Sec. 3, and the motivation for the learn-
able fusion module is presented in Sec. 4. In Sec. 5
we present additional results for Text-to-HDR, Image-to-
Video, and Inverse Tone Mapping (ITM) tasks. The blend-
ing algorithm used for Inverse Tone Mapping is detailed in
Sec. 6. Furthermore, the impact of utilizing fewer expo-
sures (two) and additional exposures (five) is analyzed in
Sec. 7. We also include the discussion of extreme dynamic
range scenes with both highlight and shadow clipping in
Sec. 8.

2. Training Details

We only show the highlight hallucination branch in Eq. (3)
and Eq. (4), where the higher exposure latent code is used
as a condition to infer the lower exposure latent codes, as
explained earlier, with the optimized target being the noise.
The the shadow hallucination branch is quite symmetric to
highlight handling.

Given the latent exposure bracket {C−, C0, C+}. We
then corrupt the overexposed latent C+ and C0 with Gaus-
sian noise at a randomly sampled timestamp t. The task
of the denoising network, ϵθ+(·) is to predict the noise
ϵ̂C+,C0
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0, t) us-

ing the objective:
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During inference, given an LDR image, we iteratively apply
the fine-tuned denoiser to generate its corresponding higher-
exposure latent codes. The weight λ in loss fucntion Eq. (2)
of the main paper is set to 10−4, and a batch size of is used
for finetuning both the VAE and the denoiser Unet.

3. Inference Time and Computational Cost
We also compare inference time and computational cost,
both evaluated on an A100 at 512×512, as shown in Table
1.

While the regression-based methods are more efficient
but yield poorer reconstructions (Fig. 5 in the main pa-
per). Meanwhile, compared to the generation-based method
GlowGAN [12], our method achieves orders-of-magnitude
superiority in inference speed and computational efficiency.

Method FLOPs Time (s)

HDRCNN 60.73G 0.03
MaskHDR 75.36G 0.54
SingleHDR 570.79G 0.08
ExpandNet 53.78G 0.02
GlowGAN 7P 780
Ours 68T 8

Table 1. Comaprisons of the inference time and computational
cost.

4. Motivation of depth-wise convolution
We use depthwise convolution for its lightweight nature and
efficiency. It extracts features from each channel of the la-
tent code independently, while concatenation and softmax-
based normalization enable cross-talk between latent codes
of different exposures. In traditional image exposure fusion
[7], weight maps are manually designed based on factors
like color, exposure, and contrast. However, in the latent
space, these variables are more challenging to define, which
is why we adopt a learning-based approach.

5. More Results
If you have a device that supports HDR, for which you
can test at: https://gregbenzphotography.com/
hdr/#tests, we suggest that you also view our results
with the html pages we provide in the supplement (i.e.,
text-to-hdr.html, inverse-tone-mapping-
highlight . html, inverse - tone - mapping -
shadow.html). Please use Chrome to ensure the images
are displayed correctly.
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5.1. Text to HDR

In this section, we present more results of text-to-HDR im-
age generation, as shown in Figs. 1–3. We reduce the expo-
sure and provide multiple exposure brackets to show a more
comprehensive comparison of dynamic range and halluci-
nation.

5.2. Image to Video

Our method can be seamlessly integrated into SD-based
image-to-video models [2], enabling the synthesis of HDR
video from a single LDR image. An example is shown
in Fig. 4. Please also refer to the folder of image-to-
video for all the generated HDR frames.

5.3. Inverse Tone Mapping

We provide additional comparisons of inverse tone map-
ping to evaluate highlight hallucination in Figs. 5–10 and
shadow hallucination in Figs. 11–16. Highlight halluci-
nation is demonstrated using tone-mapped images, while
shadow hallucination is illustrated by increasing exposure
brackets to enhance clarity. LEDiff demonstrates superior
quality in reconstructing plausible content within clipping
regions, whereas other approaches either fail to generate
meaningful outputs or produce artifacts characterized by
significant blurriness.

6. Blending Algorithm
For highlight hallucination, we follow [4, 9, 12] to blend
the generated content with the inputs. The process models
HDR luminance Ĥ in the non-overexposed regions of the
LDR image I , aligning it with the corresponding HDR area.

Inon-overexposed = (1−M)⊙ I (3)

M = min

(
1.0,max

(
0.0,

max(I)− 1.0 + thr
thr

))
, (4)

where (thr) = 0.1 is a threshold that controls the smooth-
ness of the transition. Specifically, we estimate the HDR
luminance as

Ĥestimated = (Inon-overexposed)
γ · 2exp (5)

where γ and exp are the parameters that control the trans-
formation. Note that we use this simple inversion of the
camera response function solely for image quality evalua-
tion to meaningfully align input LDR pixel values to their
reconstructed HDR counterpart. In our HDR generation and
reconstruction tasks, we do not estimate the exposure or the
camera response curve. The objective is to minimize the
difference ∆ between Ĥestimated and the reconstructed by the
decoder HDR image Ĥ for non-overexposed regions:

∆ = Ĥestimated − Ĥnon-overexposed. (6)

To optimize γ and exp, we use a least-squares approach
that minimizes the squared error across all non-overexposed
pixels:

min
γ,exp

∑
(Ĥestimated − Ĥnon-overexposed)

2. (7)

We initialize γ at 2.0 and exp at 0.0, constraining γ within
the range 1.8 ≤ γ ≤ 2.4 for stability during optimization.
Once the optimal γ and exp values are found, they are ap-
plied to the entire LDR image to adjust its luminance:

Ĥadjusted = (I)γ · 2exp. (8)

Next, we blend the adjusted image with the HDR image
to create a seamless transition between the two. Using a
blending mask that isolates the non-overexposed regions of
the LDR image, we compute the blended image as follows:

Ĥblend = (1−M) · Ĥadjusted +M · Ĥ. (9)

7. Ablation of Exposures
In this paper, we use a three-exposure bracket, a common
practice in image-based exposure fusion [3, 5, 6, 10, 11, 13].
Additionally, we study the effects of using fewer exposures
(two) and more exposures (five). In this ablation, we mod-
ify the exposure interval during data creation and finetune
both the VAE and the denoiser. We then use ITM to hal-
lucinate highlight areas to assess its performance. While
five exposures increases the dynamic range it can capture,
it requires additional and accumulative denoising iterations,
where errors add up.

In traditional multi-exposure HDR reconstruction meth-
ods, including the concurrent diffusion-based solution [1],
exposure brackets are defined in the image space, with the
number of brackets typically determining the extent of the
reconstructed dynamic range. In contrast, our approach,
LEDiff, introduces exposure brackets defined in the latent
space. These exposure brackets represent an internal, inter-
mediate HDR image encoding, which is further processed
by a learnable decoder. As a result, drawing an analogy
to image-space exposures is not straightforward. This ex-
plains why we found increasing the number of exposure
levels leads to worse results, contrary to the conventional
approach in image-space exposure bracketing.

Exposures HDR-VDP3 ↑ PU21-PIQE ↓
Two 6.14 ± 0.86 48.70 ± 6.94
Five 5.73 ± 1.15 49.19 ± 6.80
Ours 6.16 ± 0.97 48.46 ± 7.04

Table 2. Ablation study on the number of exposures. The pre-
sented results indicate that using three exposures yields superior
performance.
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8. Extreme Dynamic Range Scenes
Our model addresses such cases by sequentially processing
the underexposed regions followed by the overexposed re-
gions. We provide one of such examples in Fig. 17 and
will include more detailed discussions and examples in the
supplement.
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Prompt: A grand, dimly lit hall with a single candle in the foreground.

Prompt: A quiet city street at dusk, lined with glowing street lamps and buildings in the background.
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Prompt: Two elegant wine glasses on a re�ective surface in a minimalist setting.
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Figure 1. Results of Text-to-HDR image. Our method enables the generation of HDR images from text prompts, overcoming the limitation
of Stable Diffusion [8], which is restricted to producing LDR images.
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Prompt: A bright living room with sunlight streaming through windows.

Prompt: Rainy night city with lights re�ecting on wet pavement.

SD
LE

D
i�

SD
LE

D
i�

Prompt: Four candles with warm �ames in rustic holders arranged on a wooden surface.
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Figure 2. Results of Text-to-HDR image. Our method enables the generation of HDR images from text prompts, overcoming the limitation
of Stable Diffusion [8], which is restricted to producing LDR images.
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Prompt: A glass of whiskey surrounded by empty glasses in a dimly lit bar.

Prompt: Modern kitchen with granite tops, stainless appliances, and pendant lights.
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Prompt: A single lit candle on a wooden stand against a plain background.
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Figure 3. Results of Text-to-HDR image. Our method enables the generation of HDR images from text prompts, overcoming the limitation
of Stable Diffusion [8], which is restricted to producing LDR images.
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Figure 4. Results of image-to-HDR video. Our method enables the baseline model, SVD, to generate HDR video from a single LDR
image.
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LDR HDRCNN MaskHDR SingleHDR OursExpandnet

Figure 5. Visualizations of inverse tone mapping evaluations for hallucination are shown across several representative HDR scenes.
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LDR HDRCNN MaskHDR SingleHDR OursExpandnet

Figure 6. Visualizations of inverse tone mapping evaluations for hallucination are shown across several representative HDR scenes.
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LDR HDRCNN MaskHDR SingleHDR OursExpandnet

Figure 7. Visualizations of inverse tone mapping evaluations for hallucination are shown across several representative HDR scenes.
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LDR HDRCNN MaskHDR SingleHDR OursExpandnet

Figure 8. Visualizations of inverse tone mapping evaluations for hallucination are shown across several representative HDR scenes.
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LDR HDRCNN MaskHDR SingleHDR OursExpandnet

Figure 9. Visualizations of inverse tone mapping evaluations for hallucination are shown across several representative HDR scenes.
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LDR HDRCNN MaskHDR SingleHDR OursExpandnet

Figure 10. Visualizations of inverse tone mapping evaluations for hallucination are shown across several representative HDR scenes.
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Figure 11. Visualizations of inverse tone mapping evaluations focusing on shadow hallucination. For improved illustration, the exposure
levels are increased to enhance the visibility of shadow regions and show the hallucinated content produced by our method.
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Figure 12. Visualizations of inverse tone mapping evaluations focusing on shadow hallucination. For improved illustration, the exposure
levels are increased to enhance the visibility of shadow regions and show the hallucinated content produced by our method.
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Figure 13. Visualizations of inverse tone mapping evaluations focusing on shadow hallucination. For improved illustration, the exposure
levels are increased to enhance the visibility of shadow regions and show the hallucinated content produced by our method.

16



LD
R

HD
RC

N
N

M
as

kH
DR

Si
ng

le
HD

R
O

ur
s

Ex
pa

nd
ne

t

Exposure Increasing

Figure 14. Visualizations of inverse tone mapping evaluations focusing on shadow hallucination. For improved illustration, the exposure
levels are increased to enhance the visibility of shadow regions and show the hallucinated content produced by our method.
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Figure 15. Visualizations of inverse tone mapping evaluations focusing on shadow hallucination. For improved illustration, the exposure
levels are increased to enhance the visibility of shadow regions and show the hallucinated content produced by our method.
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Figure 16. Visualizations of inverse tone mapping evaluations focusing on shadow hallucination. For improved illustration, the exposure
levels are increased to enhance the visibility of shadow regions and show the hallucinated content produced by our method.
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(a) A real photo with over/underexposure (b) LEDi� output
Figure 17. Reconstruction of an image with both highlight and shadow clipping. (a) A real photo that captures an extreme dynamic range
scene, and its scanlines. (b) Our HDR reconstruction successfully recovers details in both shadow and highlight regions. Note the differing
y-axis scales in the left and right plots.
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