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A. Implementation and Architectural Details
A.1. Implementation Details
For image classification on ImageNet-1K [2], we adopt the
same training recipe as [9, 15, 21]. Specifically, we em-
ploy the standard image size of 224×224 for both training
and testing. All models are trained from scratch for 300
epochs. We use the AdamW optimizer [17] with a cosine
learning rate scheduler. The initial learning rate is set to
4×10−3, and the total batch size is set to 2048. For data
augmentation, we leverage mixup [26], RandAugment [1],
CutMix [25], and random erasing [27], etc. Tab. 1 provides
the training details of LSNet.

For object detection and instance segmentation on
COCO-2017 [14], we employ the same training setting
as [12, 15, 21]. Specifically, we utilize the AdamW opti-
mizer and train the model for 12 epochs with a batch size
of 16. The training resolution is 1333×800 and the initial
learning rate is set to 2×10−4. The learning rate decays
with a rate of 0.1 at the 8-th and 11-th epochs. We initialize
the backbones with the pretrained ImageNet-1K weights.

For semantic segmentation on ADE20K [28], follow-
ing [13, 21], all models are trained for 40K iterations by
the AdamW [17] optimizer with a batch size of 32. We
adopt the poly learning rate schedule with the power of 0.9
and the initial learning rate of 2×10−4, like [13, 21]. We
employ the training resolution of 512×512 and report the
single scale testing results on the ADE20K validation set,
as in [20, 24]. The backbone models are initialized with the
pretrained weights on ImageNet-1K.

For robustness evaluation, following [16, 19, 21], we
employ the ImageNet-C [6], ImageNet-A [8], ImageNet-
R [7], and ImageNet-Sketch [22] benchmarks. Specifically,
ImageNet-C consists of algorithmically generated corrup-
tions that are applied to the ImageNet test set. ImageNet-
A contains naturally occurring examples misclassified by
ResNets [4]. ImageNet-R comprises natural renditions of
object classes in ImageNet, incorporating various textures
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and image statistics. ImageNet-Sketch includes white and
black sketches of all ImageNet classes, gathered through
google image queries.

Table 1. Training details on ImageNet-1K.

Model LSNet-T/S/B
optimizer AdamW
batch size 2048

training epochs 300
LR schedule cosine
learning rate 0.004

warmup epochs 5
weight decay 0.025/0.025/0.05
augmentation RandAug(9, 0.5)
random erase 0.25

color jitter 0.4
mixup 0.8
cutmix 1.0

gradient clip 0.02
label smooth 0.1

Table 2. Architectural details of LSNet variants.
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A.2. Architectural Details
Tab. 2 presents the architectural details of LSNet variants,
which are distinguished by the number of blocks and the
number of channels within each stage.

B. More Comparisons

We present more comparisons between LS convolution and
others from mathematical perspectives. Specifically, for
simply combining large-kernel with small-kernel convolu-
tions, it follows the similar perception Pconv and aggre-
gation Aconv processes as the standard convolution, i.e.,
leveraging relative positions for relationship modeling and
static kernel weights for feature integration. However, com-
pared with LS convolution, it suffers from the limited mod-
eling capability due to the lack of adaptability for different
contexts. In other dynamic ways, Involution [11] leverages
MLP for perception Pinv to derive the aggregation weights
conditioned on xi. Its aggregation Ainv then use the
weights to convolve the features in NK(xi) with the process
of yi = Ainv(Pinv(xi),NK(xi)) = MLP(xi) ⊛ NK(xi).
Although the aggregation process is dynamic, its perception
process is confined to xi, which leads to inadequate neigh-
borhood relationship modeling compared with LS convolu-
tion. Additionally, CondConv [23] proposes per-example
routing with global average pooling and MLP to linearly
combining multiple convolution kernels for the aggregation
weights in its perception Pcond. Its aggregation Acond then
convolves the features in NK(xi) with the weights. Its pro-
cess yi = Acond(Pcond(X),NK(xi)) can be formulated
as yi = (

∑
MLP(GAP(X)) · Wcond) ⊛ NK(xi). How-

ever, unlike LS convolution, CondConv leverages example-
dependent perception, which prevents distinct tokens to
adapt to diverse contexts.

C. Qualitative Analyses

C.1. Analyses for LS Convolution
We present the visualization analyses to qualitatively show
the effectiveness of LS convolution. Specifically, we em-
ploy the effective receptive field [3, 18] method to com-
pare LS convolution with convolution and self-attention,
based on LSNet-T. We introduce the state-of-the-art Rep-
Mixer [21] and CGA [15] as the representatives of convo-
lution and self-attention, respectively. Besides, we simply
replace all LS convolutions in the model with others. As
shown in Fig. 1, RepMixer and CGA suffer from the un-
natural patterns, caused by static convolution kernels and
window-based self-attention, respectively. In contrast, LS
convolution enjoys both central area focusing and exten-
sive peripheral viewing, showing smooth visual processing.
Meanwhile, compared with “w/o LKP” where the large-
kernel depth-wise convolution in the LKP is removed, LS

(d) w/o LKP(c) LS convolution

(a) RepMixer (Convolution) (b) CGA (Self-attention)

Figure 1. Visualization of the effective receptive field. Best viewed
when zoomed in. (a) and (b) show that RepMixer and CGA exhibit
unnatural patterns in the effective receptive field. (c) illustrates that
LS convolution enables broad peripheral perception and central
view focusing simultaneously. (d) shows that without LKP, LS
convolution presents a smaller receptive field compared with (c),
indicating the effectiveness of LKP.

convolution exhibits an enlarged effective receptive field. It
is attributed to the ability of LKP to efficiently capture broad
contextual information.

Furthermore, we conduct visualization for the aggrega-
tion weights in LS convolution. Specifically, we obtain
the cumulative value of the aggregation coefficients corre-
sponding to each token in all aggregation processes it is in-
volved in. We then visualize the average of the absolute
values of all channels in the last layer at the third stage and
perform upsampling for display. As shown in Fig. 2, the ag-
gregation weights of SKA enjoy favorable interpretability.
They effectively strengthen semantically relevant vision re-
gions and accurately capture discriminative patterns in im-
ages. Besides, compared with “w/o LKP”, LS convolution
exhibits more precise emphasis on important visual areas,
showcasing the improved modeling of spatial relationships
facilitated by LKP. Based on LKP and SKA, LS convolution
can thus help the model to grasp the critical visual infor-
mation under limited computational costs, enhancing both
efficiency and effectiveness.

Besides, we also visualize the feature maps generated by
the LKP and SKA for more inspection. Specifically, we use
the features after the large-kernel depth-wise convolution
and the small-kernel dynamic convolution in the first stage
for demonstration. As shown in Fig. 3, the feature maps
produced by LKP exhibit a broad receptive field, capturing
a wide range of contextual information in the scene. This
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Figure 2. Visualization of the aggregation weights in LS convolution. The second row shows that the aggregation weights are well
correlated with semantic relevant areas. The third row indicates that integrating LKP enables LS convolution to capture more precise visual
patterns with improved contextual information.

Input LKP SKA Input LKP SKA

Figure 3. Visualization of the feature maps of LKP and SKA. The second column in each part shows that LKP can encompass a broad view
of the scene. The third column in each part indicates that based on LKP, SKA can further grasp more subtle features and detailed patterns.

characteristic is reminiscent of the human peripheral vision
system, adept at sensing the general surroundings. On the
other hand, based on LKP, SKA further demonstrates the
ability to grasp finer details within the image. It can re-
sult in more subtle features like gradients of hairs and clear
outlines. This behavior is analogous to the human central

vision system, which excels at discerning fine details and
high-resolution information. Thanks to them, LS convolu-
tion can well help the model achieve the effective and effi-
cient perception and aggregation processes.



Figure 4. Qualitative results for object detection and instance segmentation on COCO-2017 [14].

Figure 5. Qualitative results for semantic segmentation on ADE20K [28]. The upper row shows the ground truth masks, and the lower row
presents the predicted masks.

C.2. Analyses for Downstream Tasks

We present the qualitative results when integrating LSNet
into the Mask-RCNN framework [5] for object detection
and instance segmentation tasks, and into the Semantic FPN
framework [10] for the semantic segmentation task. As il-
lustrated in Fig. 4, the model can achieve precise detection
and segmentation of instances in diverse images. Besides,
as shown in Fig. 5, the model demonstrates the ability to
generate high-quality semantic segmentation masks.

D. Contribution, Limitation, and Impact

Contribution. In summary, our contributions are threefold,
as follows:
1. We advocate a new strategy “See Large, Focus Small”,

inspired by the human vision system, for lightweight and
efficient network design. By encompassing a broad per-
ceptual range with enriched contextual information, it fa-

cilitates focused feature aggregation, fostering detailed
visual understanding.

2. We propose LS convolution as a novel operation for
modeling visual features in lightweight models. LS con-
volution integrates large-kernel perception and small-
kernel aggregation, enabling proficient processing of vi-
sual information through both effective and efficient per-
ception and aggregation processes.

3. We present a new family of lightweight vision networks,
namely LSNet, which is built on LS convolution. Ex-
tensive experiments demonstrate that LSNet achieves
the state-of-the-art performance and efficiency trade-
offs compared with other lightweight networks across a
broad range of vision tasks.

Limitation. Due to the limited computational resources,
we do not extend the application of our LSNet to other
scenarios, such as visual-language tasks or unsupervised
learning. We do not investigate the pretraining of LSNet



on large-scale datasets, e.g., ImageNet-21K [2], due to the
same reason. However, we are enthusiastic about exploring
more applications for LSNet in the future.

Societal Impact. We observe that this study is purely
academic, and we have not identified any direct negative
social impact resulting from our work. Nevertheless, we
acknowledge the potential for malicious use of our models,
which is a concern that affects the field. While we believe
that it should be mitigated, discussions concerning this mat-
ter are beyond the scope of this paper.
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