Learning Hazing to Dehazing: Towards Realistic Haze Generation for
Real-World Image Dehazing

Supplementary Material

A. Additional Experimental Results

This supplementary material provides additional exper-
imental results, including further visual comparisons using
the RTTS dataset [5], the ablation study of HazeGen, the
analysis of the effectiveness of HazeGen, and the influence
of hyperparameters in AccSamp.

A.1. Additional Visual Comparisons on RTTS

Further qualitative comparisons on the RTTS dataset [5]
are presented in Figure 11, showcasing our method
against recent state-of-the-art approaches, including D4 [7],
RIDCP [6], and PTTD [3]. D4, RIDCP, and PTTD leave
substantial residual haze and exhibit poor visual quality,
including unpleasant color shifts. In contrast, our method
achieves superior haze removal performance, delivering re-
sults with natural color restoration, improved visual coher-
ence, and overall enhanced aesthetic appeal.

A.2. Ablation Study of HazeGen

Beyond quantitative results, we present visual compar-
isons of various ablation configurations against the com-
plete HazeGen framework in Figure 12. Specifically,
columns (b) and (c) depict results from HazeGen with-
out the hybrid training or the blended sampling approach,
respectively. Column (d) illustrates outcomes when both
strategies are omitted, and column (e) provides results with-
out HazeGen, where DiffDehaze is directly trained on the
synthetic data provided by RIDCP [6]. These visual results
clearly demonstrate that the full HazeGen framework con-
sistently achieves the highest performance, providing supe-
rior dehazing quality and enhanced detail rendering, as ex-
emplified by clearer tree textures in the second row. Addi-
tionally, the absence of the entire HazeGen framework re-
sults in notably inferior performance.

A.3. Effectiveness of HazeGen

To further illustrate the advantage of training data
generated by HazeGen, we evaluate the performance of
three models—MSBDN [4], NAFNet [1], and DiffDe-
haze—trained separately on synthetic data from RIDCP [6]
and realistic data generated by HazeGen. As shown in Fig-
ure 13, models trained on HazeGen data consistently exhibit
superior haze removal and enhanced visual quality com-
pared to models trained on synthetic data.

A 4. Effect of Hyperparameters (w and s) in Acc-
Samp

This section analyzes two crucial parameters of Acc-

Samp: w and s. Parameter w determines the number of
refinement sampling steps, while s controls the strength of
the fidelity guidance applied.
Effect of w. Visual sampling results obtained using various
w values (1000, 800, 600, 400, and 200) are illustrated in
Figure 14. Adjusting w enables a trade-off between detail
quality and sampling speed. Since inference time is approx-
imately proportional to the number of sampling steps, re-
ducing w improves both sampling speed and image fidelity.
The high-quality training data allows even small w values
to yield strong dehazing performance. Nevertheless, larger
values of w produce richer details due to increased sam-
pling iterations. Empirically, we find setting w around 600
provides the best balance between speed and detail quality.
Effect of s. Figure 15 shows sampling results with different
values of fidelity guidance strength s (0.0, 0.1, 0.2, 0.5, and
1.0). Adjusting s provides control over the balance between
quality and fidelity. Larger values of s enhance fidelity to
the input image but can lead to less detailed or softer results
compared to smaller values of s.
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Figure 11. More visual comparisons on the RTTS dataset [5]. Zoomed-in for details.

(a) Input (b) w/o hybrid (c) w/o blended (d) w/o both (e) w/o HazeGen (f) Full

Figure 12. Visual comparisons of ablation settings of HazeGen against the full version. Zoomed-in for details.
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Figure 13. Visual comparisons of dehazing models trained on data produced by RIDCP [6] and HazeGen. Zoomed-in for details.
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Figure 14. Dehazing results with varying timestep w in AccSamp. Zoomed-in for details.
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Figure 15. Dehazing results with varying strength s of the fidelity guidance. Zoomed-in for details.
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