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Appendix

A. Comparison with more methods

This section compares our LeviTor with more recent
methods SG-I2V [3] and MOFA-Video [4]. The qualitative
comparison in Fig. S1 shows that these methods fail
to follow complex trajectories or produce proper depth
variation.
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Figure S1. Qualitative comparison with SG-I2V and MOFA-
Video.

B. More Ablations on the Number of Control
Points for Inference

In this section, we show more examples of choosing
different numbers of control points to generate videos
with LeviTor. We conduct inference with our default
number of control points and with more densely packed
points, respectively. The results are shown in Fig. S2.
It can be seen that with the default number of control
points, our LeviTor can reasonably represent the state
of fluid movement and human running. However, since
the generation strictly follows the control points, the more
control points used, the less space is left for our model
to produce some non-rigid movements, resulting in the
unreasonable results of waves floating in the air and people
gliding on the road. This demonstrates that overly dense
control points cannot generate non-rigid motion well. Thus,
we implement LeviTor with multiple clustered points
control rather than directly using object masks as the
condition. In this way, users can flexibly adjust the number
of control points as needed to generate both rigid and non-
rigid motions.
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Figure S2. Ablation results on the Number of Control Points for
Inference. We highly recommend viewing the visualization results
for detailed video demonstrations.

Table S1. Quantitative comparison with Single-point Control on
DAVIS [2].

Methods FID ↓ FVD ↓ ObjMC ↓
Single-Point Control 30.91 253.73 38.21

Ours 25.41 190.44 25.97

C. Comparison with Single-point Control

One of our key motivations is to represent 3D motions by
utilizing the clustering and dispersion of multiple points
within object masks. Another more intuitive idea is
whether we can represent 3D motion using 2D trajectories
combined with depth information. That is, representing
a 3D trajectory through a single 2D trajectory along with
changes of depth values input by users. To validate this
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Figure S3. Comparison with Single-point Control model. We
highly recommend viewing the visualization results for detailed
video demonstrations.

idea, we use the center point of each object’s mask as a
control point and train the model with the value change of
that point as the generation condition. We conduct both
qualitative and quantitative analysis. Qualitative results
in Fig. S3 show that such single-point control can not
represent 3D motions well. The first two examples test
the representation of occlusion. It can be observed that
a single point with depth changes controlling struggles to

accurately express occlusion, resulting in the disappearance
of the purple light cluster and the deformation and merging
of the cars. The third example tests the control of forward
and backward movements. Compared to our LeviTor,
single-point control is not very sensitive to size changes
caused by forward and backward movement. Quantitative
results in Tab. S1 also show the advantage of 3D motion
representation with clustering and dispersion of multiple
points. The ablation study in Tab. 2 of the main text
indicates that the value of depth does not significantly affect
the quality of the generated results. And results in this
section show that 2D trajectories with depth value changes
can not represent 3D motions. These conclusions both
suggest that in our method, the clustering and dispersion
of multiple control points are the key aspects of 3D motion
representation, while depth information is generally used
for moving objects in 3D space to obtain rendered object
masks.

D. Bad Case Analysis
We, in this section, list some bad generation cases for anal-
ysis. Results shown in Fig. S4 indicate that our LeviTor
has difficulties in reconstructing small faces and generating
scenes with large motions. It may also confuse similar parts
of objects. For example, in the first row of Fig. S4, the horse
faces become blurry while walking, and the movement of
their legs is also quite unnatural. Similarly, in Fig. S2, the
movement of the person’s feet while running also appears
unnatural. In the second row, the elephant’s front leg
suddenly turns into a back one, and then a regenerated
front leg appears. We attribute this phenomenon to the
fact that the underlying video base model Stable Video
Diffusion (SVD) [1] we apply is unable to reconstruct
small faces and tends to produce artifacts when generating
large-scale movements. We are going to enhance our
model by integrating more advanced video-based models
in the future, hoping to better capture deformable objects
and complex dynamics to handle large-scale and non-rigid
motions.



Figure S4. Bad Cases of LeviTor.
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