
LinGen: Towards High-Resolution Minute-Length Text-to-Video Generation
with Linear Computational Complexity

Supplementary Material

A. Adjacency Preservation
Vanilla Mamba2 cannot be scaled to process huge images
and video tokens well due to its long-range decay and the
well-known adjacency preservation issue (see Sec. 1 of
the main paper), causing distorted and inconsistent videos.
Loss comparisons in Fig. 11 of the main paper and ablative
videos (see Sec. B) validate the effectiveness of RMS and
TESA. Mamba models scan image and video tokens into a
sequence, where the minimum distance between originally
adjacent tokens in k layers reflects their most precise cor-
relation. For an H ×W × T token tensor, we compute its
average, dk, among adjacent tokens in a 2× 2× 2 cube and
plot dk in Fig. 1 for H = W = T = 32. RMS achieves
the same dk as Zigzag while being much more efficient and
scalable (see Table 2 of the main paper). RMS and TESA
thoroughly address the adjacency preservation issue.

Figure 1. Average minimum distance between adjacent tokens.

B. Visual Examples
We provide visual examples that include:
• Video Demos. 17-second and 68-second videos gener-

ated by LinGen (see Fig. 2).
• Comparisons with existing video generation works.

Our baselines are typical open-source models (see Fig. 3),
including T2V-Turbo-v2 [16], CogVideoX-5B [31], and
OpenSora v1.2 [34], state-of-the-art accessible commer-
cial models (see Fig. 4), including Kling [13], Runway
Gen3 [21], and LumaLabs [17], and minute-length video
generation trials (see Fig. 5), including Loong [29] and
PA-VDM [30]. Note that PA-VDM has not yet released
the code and prompts. Thus, we selected one LinGen-
generated video similar to their demo video for reference.

• Ablation experiments. Video comparisons to validate
the effectiveness of modules and techniques deployed
in LinGen, including TEmporal Swin Attention (TESA),
Rotary-Major Scan (RMS), review tokens, hybrid train-
ing, and quality-tuning (see Fig. 6 and Fig. 7).

C. Comparisons with Prior Works

In this section, we first supplement VBench results reported
in Sec. C.1 in order to compare with more models and dis-
cuss the limitations of VBench. Then, we present visual ex-
amples of the generated videos to provide comparisons with
prior works and include additional human evaluation results
in Sec. C.2 to demonstrate high quality of videos generated
by LinGen.

C.1. Automatic Metrics: VBench Results

We provide a more complete VBench-Long leaderboard in
Table 1. We also evaluate LinGen on the standard VBench
and compare it with other models on this leaderboard in
Table 2. Note that most models on this leaderboard can
only generate very short videos (usually shorter than 5 sec-
onds). VBench also provides the option to perform eval-
uations with customized prompts, although only some of
the quality metrics are supported. We evaluate LinGen with
Movie Gen Bench prompts [19] and compare it with other
models on the VBench-Custom leaderboard in Table 3.

The VBench results do not perfectly align with human
preference. We find that Kling is more preferred in hu-
man evaluation than Runway Gen-3, but it obtains a lower
VBench score. To further illustrate this point, as shown
in Table 4, when we evaluate our model at 256p and 512p
resolutions on VBench-Custom, they obtain similar scores.
However, 512p-generated videos have a much higher win
rate than 256p-generated videos in human evaluation of
video quality.

C.2. Visual Examples and Human Evaluation

Given that the VBench results do not perfectly align with
human preference, we provide more visual examples and
human evaluation results to demonstrate the high quality of
videos generated by LinGen in Fig. 4 and Fig. 8, respec-
tively. Fig. 8 shows that LinGen outperforms typical open-
source video generative models by a large margin.

D. More Ablation Experiments

We provide more visual examples of ablation experiments
on the TESA block, RMS, review tokens, hybrid training,
and quality-tuning in Fig. 6 and Fig. 7. This indicates that
all of them contribute effectively to the consistency and high
quality of the videos generated.
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Prompt: Carefully pouring the milk into the cup

Prompt: A crab scurrying around its burrow

Prompt: Strawberries and blueberries falling into water

Prompt: A sea turtle swimming near a shipwreck 

Figure 2. Examples of 17-second and 68-second videos generated by LinGen.

E. Model Implementation Details
In this section, we first provide more details of our model
backbone in Sec. E.1. Then, we compare Mamba and
Mamba2 and present their technical details in Sec. E.2. Fi-
nally, we give the details of our training recipe in Sec. E.3.

E.1. Backbone Details

LinGen learns a spatiotemporally compressed latent space
using a Temporal AutoEncoder (TAE), designed similarly
to the one in a prior work [19]. The TAE achieves a tempo-
ral compression rate of 8× and a spatial compression rate of
8×8, followed by a 2×2×1 patchification. LinGen uses a
factorized learnable positional embedding [7] to enable ar-
bitrary video size and length. We employ RMSNorm [32]
and SwiGLU [22] in LinGen, with adaptive layer normal-
ization conditioned on the time step [18].

After completing architectural design exploration de-
picted in Fig. 9, we employ 32 layers with 20 heads in each,
with the dimension of embedding vectors being 2560.

E.2. Mamba and Mamba2

SSMs have gained popularity in the field of natural lan-
guage processing due to their high efficiency and strong per-

formance in handling long sequences [9, 10]. Mamba [8],
as a variant of SSM, enhances efficiency significantly by in-
corporating dynamic parameters into the SSM structure and
developing algorithms optimized for better hardware com-
patibility. Based on this, Mamba2 [5] unifies SSMs and
masks efficient attention by proposing a special SSM with
an attention format (i.e., Structured State Space Duality).
Mamba2 removes sequential linear projections that are used
in Mamba and produces SSM parameters A,B,C in paral-
lel. The normalization layer in Mamba2 is the same as that
in [23]. It improves stability. As mentioned in our main
paper, the FLOPs cost of a bidirectional Mamba2 module is
given by

Cbimamba = (6 +
2

dh
)ENd2 + 4Ndsd+O(Nd), (1)

where E is the expansion factor, d is the dimension of token
embedding vectors, N is the number of tokens, ds is the
hidden state size, and dh is the head dimension of Mamba2,
whose default value is 64. O(Nd) includes the FLOPs cost
of 1D convolution and the SSM block in Mamba2:

Cconv = 2EK(N +K − 1)d (2)
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Figure 3. Comparisons with typical open-source video generative models.

CSSM = 4ENdsd+ 2ENd (3)

where K is the kernel size of 1D convolution. The above
FLOPs should be doubled when the module is bidirectional.

Compared to Mamba, Mamba2 (1) has an attention for-
mat and thus benefits from existing efficient attention ker-
nels, such as FlashAttention [6] and xFormers [15], (2) sup-
ports much larger hidden state sizes with lower latency, and
(3) has better support for tensor parallelism for upscaling of
the model [26].

Although Mamba2 compromises expressive power due

to the simplification of the decay matrix in an SSM [5],
it compensates for this using a much larger hidden state
size. We set the hidden state size to 16 and 128 in Lin-
Gen w/ Mamba and LinGen w/ Mamba2, respectively, for
both quality comparison and latency measurement, follow-
ing their default values in the original design [5].

E.3. Training Recipe Details

In this section, we introduce our progressive training recipe
in Sec. E.3.1. Then, we discuss our text-to-image and text-
to-video hybrid training setting in Sec. E.3.2. We describe



Prompt: Camera zoom in. A chef chopping vegetables with speed.
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Figure 4. Comparisons with state-of-the-art accessible commercial models.

Model Subject BG. Temp. Motion Aesthe. Imag. Dyna. Quality Total Max. Raw
Consist. Consis. Flick. Smooth. Quality Quality Degree Score Score Frames

Runway Gen-3 [21] 97.10% 96.62% 98.61% 99.23% 60.14% 63.34% 66.82% 84.11% 82.32% 256
Kling [13] 98.33% 97.60% 99.30% 99.40% 46.94% 61.21% 65.62% 83.39% 81.85% 313
CogVideoX-5B [31] 96.23% 96.52% 98.66% 96.92% 70.97% 61.98% 62.90% 82.75% 81.61% 48
Mochi-1 [25] 96.99% 97.28% 99.40% 99.02% 61.85% 56.94% 60.64% 82.64% 80.13% 163
OpenSora V1.2 [34] 96.75% 97.61% 99.53% 98.50% 42.39% 56.85% 63.34% 81.35% 79.76% 408
Mira [12] 96.23% 96.92% 98.29% 97.54% 60.33% 42.51% 60.16% 78.78% 71.87% 60

LinGen 98.30% 97.60% 99.26% 98.58% 63.67% 60.55% 63.36% 83.77% 81.76% 1088

Model Object Multiple Human Color Spatial Scene Appear. Temp. Overall Semantic
Class Objects Action Relatio. Style Style Consist. Score

Runway Gen-3 [21] 87.81% 53.64% 96.40% 80.90% 65.09% 54.57% 24.31% 24.71% 26.69% 75.17%
Kling [13] 87.24% 68.05% 93.40% 89.90% 73.03% 50.86% 19.62% 24.17% 26.42% 75.68%
CogVideoX-5B [31] 85.23% 62.11% 99.40% 82.81% 66.35% 53.20% 24.91% 25.38% 27.59% 77.04%
Mochi-1 [25] 86.51% 50.47% 94.60% 79.73% 69.24% 36.99% 20.33% 23.65% 25.15% 70.08%
OpenSora V1.2 [34] 82.22% 51.83% 91.20% 90.08% 68.56% 42.44% 23.95% 24.54% 26.85% 73.39%
Mira [12] 52.06% 12.52% 63.80% 42.24% 27.83% 16.34% 21.89% 18.77% 18.72% 44.21%

LinGen 90.98% 55.15% 97.50% 83.95% 58.15% 53.51% 21.08% 24.29% 26.32% 73.73%

Table 1. A more complete VBench-Long leaderboard. Quality Score measures the quality of generated videos and Semantic Score
measures text-video alignment. Total Score represents their weighted sum. Higher values indicate better performance for all these metrics.
LinGen can be seen to be comparable to state-of-the-art commercial models (i.e., Gen-3 and Kling) and significantly outperform typical
open-source models.
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Figure 5. Comparisons with existing trials on generating minute-length videos.

the details of our training datasets and quality-tuning design
in Sec. E.3.3.

E.3.1 Progressive Training Recipe

We use a progressive recipe to pre-train our LinGen-4B
model. As shown in Table 5, we first pre-train our model on
the text-to-image task at a 256p resolution, followed by text-
to-video pre-training at progressively higher resolutions and
longer video lengths. In this progressive training schedule,
the token sequence length in the latent space gradually in-
creases.

E.3.2 Hybrid Training

In the text-to-video pre-training stages, we incorporate text-
image pairs into the pre-training dataset and perform text-

to-image and text-to-video joint training in practice. The
sampling ratio of text-image pairs to text-video pairs is
1:100, which is very small, preventing this hybrid setting
from reducing the motion of generated videos. We find
such a hybrid training setting not only maintains the model’s
ability to generate images but also improves consistency of
generated videos in some failure cases.

E.3.3 Quality Tuning and Datasets

We use a progressive training schedule to train our DiT-
4B and LinGen-4B models. (1) Text-to-image pre-training
at 256p resolution. We use the licensed ShutterStock [24]
image dataset, which includes 300M text-image pairs, to
train our models. (2) Text-to-video pre-training at 256p
and 512p resolutions to generate 17s videos. We use the
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Figure 6. Visual examples of ablation experiments on the TESA block, RMS, and review tokens.

licensed ShutterStock video dataset, which includes 24M
text-video pairs, to train our models. (3) Text-to-video pre-
training at 512p resolution to generate 34s and 68s videos.
We select 2.5M videos that are longer than 30 seconds from
the licensed ShutterStock video dataset to train our models.
(4) Text-to-video pre-training at 512p resolution to gener-
ate 68s videos. We select 145K videos that are longer than
60s from the licensed ShutterStock video dataset to train
our models. (5) Text-to-video quality tuning at 512p resolu-
tion. For the 17s video generation, we select 3K videos with
extremely high quality and good motions from the Shut-
terStock and RawFilm [20] video dataset to fine-tune our
model. For 68s video generation, we select 300 minute-
length videos with high quality and good motions from the
ShutterStock video dataset to fine-tune our model.

The way that we select high-quality videos is similar to
that in prior works [4, 19]. We first filter videos via auto-
matic metrics, including aesthetic score and motion score.
Then, we balance the concepts in the set of videos, manu-
ally identify cinematic videos, and manually caption them.



Showing a Failure Case in which Consistency is Abnormally Bad at 256p Resolution
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Showing a Failure Case in which Quality is Abnormally Bad at 512p Resolution
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Figure 7. Visual examples of ablation experiments on hybrid training and quality-tuning.

LinGen

LinGen

LinGen

Figure 8. Win rates of human evaluation of quality and text-video
alignment of videos generated by LinGen and typical open-source
video generative models.

Number of layers

24 32 48

Hidden Dimension

2k 2.5k 3k

LinGen Models

DiT Models

Figure 9. Latency of generating 512p 17s videos with different
model designs. The latency of LinGen models scales more slowly
with model size than self-attention-based standard DiT models.
Note that we perform 100 inference steps to measure average la-
tency. This is different from the default setting of 50 steps em-
ployed in our main paper.



Model Subject BG. Temp. Motion Aesthe. Imag. Dyna. Quality Total Max. Raw
Consist. Consis. Flick. Smooth. Quality Quality Degree Score Score Frames

T2V-Turbo-v2 [16] 95.50% 96.71% 97.35% 97.07% 90.00% 62.61% 71.78% 85.13% 83.52% 16
Runway Gen-3 [21] 97.10% 96.62% 98.61% 99.23% 60.14% 63.34% 66.82% 84.11% 82.32% 256
LaVie-2 [28] 97.90% 98.45% 98.76% 98.42% 31.11% 67.62% 70.39% 83.24% 81.75% 61
Pika-1.0 [14] 96.94% 97.36% 99.74% 99.50% 47.50% 62.04% 61.87% 82.92% 80.69% 72
VideoCrafter-2.0 [3] 96.85% 98.22% 98.41% 97.73% 42.50% 63.13% 67.22% 82.20% 80.44% 16
OpenSora V1.2 [34] 96.75% 97.61% 99.53% 98.50% 42.39% 56.85% 63.34% 81.35% 79.76% 408

LinGen 98.30% 97.60% 99.26% 98.58% 63.67% 60.55% 63.36% 83.77% 81.76% 1088

Model Object Multiple Human Color Spatial Scene Appear. Temp. Overall Semantic
Class Objects Action Relatio. Style Style Consist. Score

T2V-Turbo-v2 [16] 95.33% 61.49% 96.20% 92.53% 43.32% 56.40% 24.17% 27.06% 28.26% 77.12%
Runway Gen-3 [21] 87.81% 53.64% 96.40% 80.90% 65.09% 54.57% 24.31% 24.71% 26.69% 75.17%
LaVie-2 [28] 97.52% 64.88% 96.40% 91.65% 38.68% 49.59% 25.09% 25.24% 27.39% 75.76%
Pika-1.0 [14] 88.72% 43.08% 86.20% 90.57% 61.03% 49.83% 22.26% 24.22% 25.94% 71.77%
VideoCrafter-2.0 [3] 92.55% 40.66% 95.00% 92.92% 35.86% 55.29% 25.13% 25.84% 28.23% 73.42%
OpenSora V1.2 [34] 82.22% 51.83% 91.20% 90.08% 68.56% 42.44% 23.95% 24.54% 26.85% 73.39%

LinGen 90.98% 55.15% 97.50% 83.95% 58.15% 53.51% 21.08% 24.29% 26.32% 73.73%

Table 2. Automatic evaluation of LinGen on VBench-standard. Quality Score measures the quality of generated videos and Semantic
Score measures text-video alignment. Total Score represents their weighted sum. Higher values indicate better performance for all these
metrics.

Model Subject Background Motion Aesthetic Imaging Dynamic Quality
Consistency Consistency Smoothness Quality Quality Degree Score

Sora [1] 94.96% 95.84% 98.93% 60.30% 57.70% 69.30% 79.69%
Runway Gen-2 [21] 97.61% 97.61% 99.58% 66.96% 63.58% 18.89% 78.79%
Pika [14] 96.76% 98.95% 99.51% 63.15% 54.73% 37.22% 78.26%
VideoCrafter-1.0 [2] 95.10% 98.04% 95.67% 62.67% 61.99% 55.00% 78.14%
Show-1 [33] 95.53% 98.02% 98.24% 57.35% 59.75% 44.44% 77.50%
LaVie-Interpolation [28] 92.00% 97.33% 97.82% 54.00% 59.78% 46.11% 75.86%
LaVie [28] 91.41% 97.47% 96.38% 54.94% 61.90% 49.72% 75.75%
ModelScope [27] 89.87% 95.29% 95.79% 52.06% 58.57% 66.39% 74.91%
VideoCrafter-0.9 [2] 86.24% 92.88% 91.79% 44.41% 57.22% 89.72% 71.53%
CogVideo [11] 92.19% 96.20% 96.47% 38.18% 41.03% 42.22% 68.14%

LinGen 94.00% 96.08% 98.82% 57.86% 67.39% 44.92% 78.59%

Table 3. VBench-Custom results based on customized prompts. Quality Score represents the weighted sum of these supported metrics.



Model Subject Background Motion Aesthetic Imaging Dynamic Quality Human Eval.
Consistency Consistency Smoothness Quality Quality Degree Score Win Rate

LinGen @ 512p 94.00% 96.08% 98.82% 57.86% 67.39% 44.92% 78.59% 88.4%
LinGen @ 256p 93.61% 96.55% 98.84% 48.83% 53.92% 66.98% 78.19% 11.6%

Table 4. VBench-Custom results of LinGen at different resolutions. Higher-resolution videos obtain a much higher win rate in human
evaluation but only obtain a slightly higher VBench quality score. This indicates that VBench does not perfectly align with human
preference.

Stage # Steps Batch size GPU days

256p text-to-image 118k 8192 1189
256p text-to-video, 17s 125k 1024 1919
512p text-to-video, 17s 32k 512 2598
512p text-to-video, 34s 14k 512 2392
512p text-to-video, 68s 6k 256 1307

Table 5. The pre-training recipe of LVGen. The model was trained
on Nvidia H100 GPUs.
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