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1. Related Work

Sketch-to-Image (S2I) Generation. S2I generation aims
to transform sketches into photorealistic images. Early
work focused on sparse, abstract sketches, treating S2I as
a domain transfer task [5, 13]. Traditional GAN-based
models improved generation through contextual loss [25],
multistage generation [16], or by mapping sketches to la-
tent spaces of pre-trained GANs [21, 23, 31, 38]. Re-
cently, diffusion-based methods have gained popularity. For
example, [39] maps sketches into latent spaces of pre-
trained diffusion models, while SDEdit [26] adds noise
to sketches and denoises them based on textual prompts.
SGDM [36] ensures that noisy images align with sketches.
Multi-conditional frameworks like ControlNet [42] and
T2I-Adapter [27] use additional inputs (e.g., depth maps,
color palettes) to enhance control over generated images.
CoGS [18] employs supervised learning with image-sketch
pairs to generate high-quality images from rough sketches.
In contrast, unsupervised methods like [3] do not require
paired training data, offering greater flexibility for handling
sketches of different abstraction levels and real photos. Our
work focuses on translation tasks that maintain close struc-
tural consistency with the source image, ensuring key struc-
tural elements remain unchanged while selectively modify-
ing other aspects.

Control and Guidance in Diffusion Models. Diffusion
models have garnered significant attention in the genera-
tive modeling domain. Researchers have been exploring
image-guided stylization using diffusion models to achieve
personalized results [8, 20, 40]. Early methods in the mid-
1990s used brush strokes for stylistic effects. Then, Neural
Style Transfer [14] and [35] laid the foundation for modern
stylization, although initially limited to a single style. [15]
introduced a style prediction network to support multiple
styles. In 2022, [10] demonstrated the superior performance
of transformers in stylization. Since 2023, more diffusion-
based stylization methods have appeared [19, 29, 32, 44].
These methods leverage the extensive prior knowledge to
interpret and manipulate both structural and artistic ele-
ments in images.

2. Our Three Core Insights about Lines

2.1. Insights 1: single lines
We hold the perspective that the pivotal line dictating an
object’s three-dimensional form and surface segmentation
should be perceived as a singular, continuous, and closed
loop. This view is rooted in the common practice of sketch-
ing, where contour lines are primarily employed to delineate
the object from its background. Subsequently, the intricate
interplay of these lines, through their intersections and spa-
tial relationships, articulates the boundaries of each facet of
the object.

Building on this perspective, we conducted experiments
to evaluate the role of these pivotal lines in maintaining the
integrity of surface segmentation and appearance transfer,
as shown in Figure 5 of the main text. Specifically, we ap-
plied morphological filtering to intentionally disrupt the re-
gional segmentation of line drawings, effectively breaking
the closed and continuous nature of these lines. The results
revealed a significant impact on the generated images: col-
ors tend to be consistent in the same area, while distinct
regions displayed noticeably different colors. This observa-
tion highlighted the essential role of continuous and closed
lines in preserving the spatial coherence of color and sur-
face boundaries during generation.

2.2. Insight 2: double lines
Recognizing that human attention during the drawing pro-
cess is unevenly distributed, leading to variations in stroke
thickness and emphasis, we propose that the texture and de-
tails in line drawings should be represented as prominent
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Figure 1. Base layer shaping for overall brightness and highlight perception. (a) Adjusting the grayscale distribution of the initial input
can effectively control the overall brightness and darkness of the generated results. (b) By applying various radial filtering effects on base
layer shaping, highlight awareness can be achieved, enabling nuanced control over the placement and intensity of highlights in the output.

double-line structures. These double lines are envisioned
as continuous and narrow regions, rather than simple sin-
gle strokes. Compared to single lines, double lines attract
greater generative attention from the model. When these
double lines form closed loops, they naturally define distinct
regions that can exhibit clear color differentiation, enabling
the creation of perceptual boundaries between adjacent ar-
eas. This method not only enhances the model’s ability to
handle complex textures but also provides finer control over
the thickness and density of patterned regions, ensuring a
more precise and visually compelling result, as shown in
main Figure 12(a): Double lines.

2.3. Insight 3: soft edges
By performing frequency analysis on the real material im-
age, we observe that lines serve a dual purpose in visual
representation: not only do they imply spatial gradient re-
lationships, but their detailed depiction also conveys ma-
terial characteristics. This unique property of lines makes
them invaluable for capturing subtle transitions and texture
variations. To leverage this, we propose using a combina-
tion of points and lines to regulate spatial transitions. These
elements act as high-frequency soft constraints, effectively
bridging the structural and textural information. By incor-
porating these constraints, we aim to guide the subsequent
appearance generation process, ensuring smoother transi-
tions and more faithful material representation in the final
output.

3. Analysis for Appearance Transfer

3.1. Patch Size
In the original text, we described removing the background
from the appearance image and segmenting the remaining

textured regions into multiple patches to optimize texture
features. Specifically, the process involves removing the
background of the reference appearance image, retaining
only the valid pixel area, dividing it into smaller patches,
and reassembling them into a new texture reference im-
age. This method effectively eliminates the influence of re-
dundant background information on the generated results.
By carefully selecting the patch size, it also preserves the
light and shadow textures of the original appearance image,
thereby enhancing the material embedding features gener-
ated by the image encoder.

As shown in main Figure 12(c): Patch size, compara-
tive experiments demonstrate that this method significantly
improves the controllability of texture and color. However,
the patch-based method may disrupt the spatial consistency
of the texture. For example, using excessively small patch
sizes can result in outputs that lack continuity and glossi-
ness, as the network struggles to reconstruct the original
texture relationships, leading to suboptimal outcomes. To
address this limitation, future work could explore replacing
the patch-based method with more robust texture synthesis
algorithms that maintain spatial coherence. While this di-
rection holds promise, it is beyond the scope of this paper.

3.2. Highlight Awareness in Base Layer Shaping

The shaping of the base layer plays a pivotal role in guid-
ing perception, influencing not only overall brightness and
darkness adjustments but also highlights. As illustrated in
Figure 1, modifying the grayscale distribution of the ini-
tial input or applying radial filtering to different positions
of the image effectively controls how light interacts with
the surface. This method creates smooth transitions and en-
hances visual depth. Moreover, it preserves the fidelity of
line structures while emphasizing the dynamic interplay be-



Figure 2. Five types of deleted data displays. (1). Items not meeting task definitions, such as anatomical sketches, X-rays, 3D models,
watermarked images, or off-center objects. (2). Non-physical items like web pages, interface designs, and fonts. (3). Oversimplified, non-
3D images with poor visibility due to viewing angles, including deformed/user sketches with errors or redundant strokes. (4). Sketches
with extensive light/shadow textures. (5). Non-single objects like interior scene images.

tween textures and highlights, ensuring the generated output
aligns seamlessly with artistic intent and material proper-
ties. Such meticulous attention to the base layer is crucial
for achieving realistic and visually compelling results in de-
sign and rendering tasks.

4. ProLines Dataset
4.1. Knowledge-guided data collection
As the first work focusing on object-centric design drawings
and photo-realistic synthesis of appearance references, we
systematically collected and organized currently available
public line drawing datasets during the evaluation experi-
ment phase. In addition, previous research on sketches has
not clearly defined and classified line drawings. Therefore,
we designed a screening solution and selected 5101 design
drawings from four datasets: Bronze, DifferSketching [41],
ImageNet-Sketch [37] and DeepPatent [24].

Specifically, although there are currently multiple manu-
ally drawn sketch datasets, they are usually too abstract and
unverified (such as Sketchy [33], QuickDraw [22], Pseu-
dosketches [18], TU-Berlin [11], QMUL-Shoe/Chair [34],
and OpenSketches [17]), or contain too much information,
such as sketches with fine texture and lighting information.
In order to ensure the professionalism of the generated re-
sults, we selected four datasets as the main data sources:
1. Bronze: We collected over three thousand bronze im-
ages from four published archaeology books, and sorted out
3297 images as the Bronze dataset. All the line drawings
in this dataset were manually created by archaeology pro-

fessionals. Given the stringent and precise requirements of
archaeological tasks for artifact line drawings, this dataset
is particularly well-suited to meet the demands of our re-
search. 2. DifferSketching [41]: Contains 362 expert-
level line drawings verified by multiple people, which also
meets our task positioning. 3. ImageNet-Sketch [37]: Built
on Google Image search “sketch of ”, where “ ” is the
standard category name, the line drawings are widely dis-
tributed in types and complexity, with a total of more than
50,000, so it also won our favor. 4. DeepPatent [24]: This is
a large-scale patent dataset centered on objects, containing
more than 350,000 patent images.

However, the common problem of these four datasets is
that the complexity of images is not uniform. For example,
the DeepPatent patent dataset also contains non-physical
objects such as web pages and written layouts. There are
also a large number of 3D model views and line drawings
that do not meet the requirements of the dataset; ImageNet-
Sketch has a large amount of duplicate data and overly
complex scene sketches. Thus, it is necessary to clean the
dataset.

We developed a set of semi-automatic screening method
based on image complexity. As shown in Figure 10 of the
main text, we use ICNet [12] as a metric for quantifying the
complexity of line drawings, all images in the dataset are
scored for complexity, so that the complexity of each im-
age is quantified as a specific value between 0 and 1. Then,
we write the image names and corresponding complexity
scores of the four datasets into four tables and sort them
by score to obtain the normal distribution diagram of the



Figure 3. The result of dataset preprocessing. Mask and original line graph with background noise removed.

complexity of each of the four datasets. The line drawings
we need should not be too simple or too complex. There-
fore, we first focus on the threshold interval where the dis-
tribution of noise images is recorded, and then avoid these
noise values and try to select the central threshold interval
with a higher proportion of ideal line drawings. After a lot
of experimental attempts, this method helped us to initially
eliminate most of the inappropriate line drawings.

Subsequently, we invited 6 computer professionals with
CV/CG backgrounds to manually screen these images. The
data types that are filtered out are (as shown in Figure 2):
1. Does not meet our task object definition. For example,
some of the line drawings are anatomical sketches, biologi-
cal illustrations, X-ray images, 3D models, black-and-white
product photos, background noise, images heavily obscured
by watermark text, or images not centered on the object.
2. Non-physical objects such as web pages, interface de-
signs, and fonts. 3. Images that are too simple, not three-
dimensional, and difficult to see the actual meaning due to
inappropriate viewing angles. For example, the object be-
longs to a simple drawing/deformation/user sketch, with too
many errors and redundant strokes. 4. Sketches containing
a lot of light and shadow textures to depict details. 5. Non-
single objects such as interior decoration scene pictures.

Through the above process, we finally built a profes-
sional design drawing dataset that met our task require-
ments and had a considerable number of images. In the
end, the screening results on each dataset were as follows:
• The threshold interval of the Bronze dataset was
0.2576 ∼ 0.2903, and 380 images were screened.

• The threshold interval of the DifferSketching dataset was
0.0461 ∼ 0.2165, and 362 images remained. Although
DifferSketching is relatively simple overall, since profes-
sional design line drawing data is difficult to obtain, we
still retain the dataset as a test of our work on simple but
accurate line drawing objects.

• The threshold interval of the ImageNet-Sketch dataset
was 0.2500 ∼ 0.2650, and 1756 images were screened.

• The threshold interval of the DeepPatent dataset was
0.2715 ∼ 0.2790, and 2603 images were screened.

4.2. Data preprocessing

After screening the ideal line drawing data for complex
images, We built an automated workflow for line drawing
mask extraction, background masking, and size cropping
for subsequent generation and evaluation experiments. In
our data preprocessing process, we first perform edge de-
tection on the input line drawing, and use methods such
as the Canny algorithm to extract image edges. The ex-
tracted edge map is input into ControlNet as a control sig-
nal, and then embedded into the finely tuned Stable Diffu-
sion model. Then, we deployed the BiRefNet [45] to per-
form mask extraction and cropping of foreground objects on
the generated RGB image, and then used the obtained mask
to perform further background masking and size cropping
on the original line drawing, as shown in Figure 3. After
the mask and cropped line drawing generated by the work-
flow were completed, each image was manually reviewed
and proofread by 3 reviewers with a computer professional
background to ensure that its quality met the standards for
the use of the dataset. Through this process, we successfully
constructed a high-quality test dataset, providing a complete
process for line drawing classification and processing that
can be referenced for subsequent related research.

4.3. Appearance Image Collection Process

To conduct qualitative and quantitative analyses, we uti-
lized the ProLines dataset as the structural basis and sup-
plemented it with a collection of 61 appearance images. To
ensure the meaningfulness of the generated results, we cat-
egorized the objects in the ProLines dataset into 9 distinct
groups based on their characteristics:
1. Sculptures (362 images): Derived from the full DifferS-

ketching dataset.
2. Bronze Artifacts (380 images): Entire Bronze dataset.
3. Patent Objects (2603 images): Entire DeepPatent

dataset.
4. Fur Textures (612 images): Includes animals like cats,

dogs, and sheep from ImageNet-Sketch, which exhibit
prominent fur textures.



Figure 4. 61 appearance images. The appearance reference pictures we collected.
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Figure 5. Other examples of our method in assisting design.
Design tasks require matching a specified material with a suitable
object, or finding a suitable appearance-rendering material for a
specified design drawing. Our method can generate corresponding
rendering effects based on input design drawings and material ref-
erences.

5. Scaled Textures (187 images): Animals such as fish,
snakes, and frogs from ImageNet-Sketch, are character-

ized by smooth, scale-like textures.
6. Feathered Animals (162 images): Birds and avian

species from ImageNet-Sketch.
7. Smooth Textures (118 images): Insects and spiders

from ImageNet-Sketch, noted for their polished surfaces.
8. Simple Everyday Objects (538 images): Non-living

daily objects from ImageNet-Sketch.
9. Food (139 images): Includes items such as bread, fruits,

and vegetables from ImageNet-Sketch.

For each category, we collected 4 to 10 appearance images
to serve as texture and material prompts during the image
generation process. This ensured high-quality outputs while
maintaining sufficient complexity in the experimental tasks.
We adopted three primary strategies to gather the appear-
ance images: 1. Professional Archaeological Resources:
We curated 9 high-quality real bronze artifact photographs
from published professional archaeology books. 2. Exist-
ing public datasets and website: We selected 27 images
from VITON-HD [7] ImageNet [9] and publicly available
PBR material websites. 3. Design-Inspired Renderings: We
sourced real design rendering examples from design plat-
forms such as Behance and Pinterest. Using these examples
as inspiration, we crafted textual descriptions of 25 specific
design scenarios and generated corresponding appearance
images with DALLE-4K.

Through this process, we compiled a compact yet di-
verse testing set of 61 appearance images as shown in Fig-
ure 4. All subsequent qualitative and quantitative experi-



Figure 6. More results in design tasks using our work. Each task consists of an input line drawing, which represents the final design,
and a material reference image, which specifies the target material. These tasks cover a variety of design fields, from jewelry to household
items to clothing, and demonstrate the generation capabilities of our work across different design objects and multiple materials.



Professional 

Sketch

Appearance

Professional 

Sketch

Appearance

Professional 

Sketch

Appearance

Professional 

Sketch

Appearance

Professional 

Sketch

Appearance

Professional 

Sketch

Appearance

Figure 7. Examples of professional sketch generation results of animals by our method. We strictly screened the complexity and
selection of line drawings, but in experiments, we found that our method also performs well for professional sketches with complexity
beyond the expected level.



Figure 8. Example of user abstract hand-drawn generation results by our method. As for abstract user hand-painted pictures, we
show the effect of material transfer.

ments were conducted using the ProLines dataset combined
with this appearance image test set, ensuring a rigorous and
comprehensive evaluation of our method.

5. Experiments Details
5.1. Metrics
We evaluate the generated results from three dimensions:
edge fidelity, appearance transfer perception, and overall
perceptual quality. In terms of edge-fidelity, we use two
metrics: Structural Similarity Index (SSIM) and Chamfer
Distance (CD). SSIM is used to measure structural similar-
ity, which quantitatively evaluates the performance of the
generated image in preserving the details of the original
line. The CD further quantifies the degree of alignment be-
tween the generated line and the original contour, ensuring
the accurate capture of details. To evaluate the quality of
appearance transfer, we introduce three metrics: Gray-level
Co-occurrence Matrix (GLCM), Peak Signal-to-noise Ratio
(PSNR) [30], and Color Histogram (CH) [1] loss. GLCM
can capture the texture similarity between the generated im-
age and the reference texture, so as to deeply understand

the effectiveness of appearance transfer. PSNR measures
fidelity at the pixel level, while the color histogram feature
quantifies the similarity of color distribution, which helps to
evaluate the degree of matching of the generated result with
the target appearance image in terms of color features.

In the evaluation of overall perceptual quality, we used
Fréchet Inception Distance (FID), Learned Perceptual Patch
Similarity (LPIPS) [43], and Contrastive Language Image
Pre-training (CLIP). FID evaluates the naturalness of the
generated results by measuring the statistical similarity be-
tween the generated images and the real images. LPIPS
evaluates the perceptual similarity, which is closely related
to human visual perception. CLIP evaluates the consistency
between the visual content and semantic consistency with
the reference, ensuring that the generated images are not
only visually realistic, but also semantically consistent with
the expected appearance.

5.2. Setting of SOTAs
We selected these SOTA works for experimental results
evaluation: ZeST [6], Cross-Image Attention (CIA) [2],
StyleID [8], DreamBooth [32], InstructPix2Pix [4] + IP-



Adapter (InstructPix2Pix’), AesPA-Net [20], ControlNet-
Canny + IP-Adapter (Baseline). All works are implemented
in PyTorch and run on the Nvidia A-40 GPU with 40
GB of RAM. Among the methods compared, ZeST, Base-
line, Ours, and DreamBooth all utilize Stable Diffusion
XL Inpainting [28]. Specifically, ZeST employs the corre-
sponding version of depth-based ControlNet alongside IP-
Adapter, while both Baseline and Ours leverage the corre-
sponding version of canny-based ControlNet in combina-
tion with IP-Adapter. For DreamBooth, we use the official
LoRA-DreamBooth provided by Diffusers. CIA and In-
structPix2Pix’ utilize Stable Diffusion version 1.5. StyleID
and AesPA-Net use the official code and version.

5.3. User Study
To evaluate the performance of our method, we conducted
a user study with 20 design-background participants to as-
sess its effectiveness in preserving line structures and ma-
terial appearance, as well as its overall perceptual quality.
The study involved a ranking task with three distinct evalu-
ation criteria: edge fidelity, appearance fidelity, and overall
perception as shown in Figure 9(b). Edge Fidelity: Partici-
pants assessed how closely each generated image resembled
the line structure reference, focusing on the preservation of
black-and-white line drawing details. Appearance Fidelity:
Participants evaluated the similarity of the generated images
to the appearance reference image, paying particular atten-
tion to the accuracy of color and texture reproduction. Over-
all Perception: Participants considered the balance between
maintaining the characteristics of the line structure refer-
ence and the material and texture features of the appearance
reference, ranking images based on their overall quality and
coherence.

Participants were randomly presented with a total of 8
images per test case. The first two images served as ref-
erences: a black-and-white line drawing as the line struc-
ture reference and a color image as the appearance reference
representing texture and material. The remaining 6 images
were variations generated by different methods, which the
participants were required to rank according to the specified
criteria as shown in Figure. And the scoring rule is:

Score =

∑
frequency × weight

numberpeople

Where frequency indicates the number of times a job is se-
lected and ranked in a certain position, the weight indicates
the score corresponding to the position (the first place is
recorded as 6 points while the lowest rank is recorded as 1
point), and the number indicates the number of people se-
lected. Methods in the options appear in a random order
and their names are anonymous. Results showed that our
method achieved the highest scores across all three metrics
(5.03/6, 5.43/6, 4.83/6) as shown in Figure 9(a).

5.4. Ablation Study
We performed an ablation study to validate the effective-
ness of key design choices in our method. Specifically, we
evaluated the following four aspects: (1) the role of double
lines in controlling the thickness of pattern details; (2) the
improvement of texture feature generation by soft edges as
high-frequency constraints; (3) the impact of grayscale dis-
tribution simulation in base layer shaping on the color of
the generated results; (4) the impact of patch size selection
in texture synthesis. The experimental results are detailed
in Figure 12 of the main text. Although the baseline can
achieve the basic sketch-guided generation effect, the gen-
erated appearance attributes deviate greatly from the target
reference image. In each row of the diagram, we build on
the baseline method by incrementally adding our proposed
key components.

As shown in Figure 12 of the main text, the introduc-
tion of double line operations can accurately control the
thickness of the pattern in the line graph and enhance the
model’s fidelity to structured information. Using soft edges
can significantly affect the fidelity and trend of the texture
primitive texel. The application of base layer shaping sig-
nificantly improves the similarity of the generated results
to the target appearance image in terms of color and light
and dark contrast. In texture synthesis, when the patch size
value is set to 150, better texture feature encoding effects
can usually be achieved.

5.5. Additional Qualitative Results
We show more generated results by our method on the de-
sign tasks. As shown in Figure 6, our work facilitates rapid
and efficient execution of design workflows. Specifically, it
can swiftly render design drawings with specified material
effects, providing designers with an intuitive way to assess
whether the design of a line draft is practical within mate-
rial constraints. For fixed product line drawings, our method
offers the capability to incorporate various material textures
into technical drawings, generating diverse material effect
previews. This functionality assists designers in identifying
the most suitable material combinations for their product
line draft designs.

Based on the discussion above, we refined the catego-
rization of current sketch-related tasks and proposed a de-
tailed filtering and preprocessing workflow. Beyond this,
we also conducted experiments on data types not ideally
suited for this work to explore the robustness of our method.
For instance, as shown in Figure 7, we performed animal fur
color transfer on professionally drawn animal sketch line
art, achieving visually plausible results. Additionally, as
illustrated in Figure 8, our method demonstrated impres-
sive generation performance on more abstract and deformed
sketches, such as those from user studies, highlighting its
adaptability to diverse input styles and levels of abstraction.



(a) Result of User Study

(b) User Questionnaire Overview

Figure 9. (a) Scoring results of user study questionnaire answers. (b) User study questionnaire overview.

6. Limitation

As shown in Figure 7 above, our method also performs well
for sketches that contain detailed shadows, but the appear-
ance transfer effect of line drawings that contain too many
shadows or objects that have drawn a lot of texture details is
still challenging. For example, in column 3 of Figure 10(a),
the details of the owl’s eyes are lost during the generation

process, and the identity consistency is not maintained. In
Figure 10(a)-5, the details of the dog’s ear sketch conflict
with the wool texture, resulting in the dog’s long ears de-
generating into part of the body in the generated result. In
Figure 10(a)-6, the soft edges in our design struggle to pre-
serve the detailed pattern of the cabinet and the clarity of
the fish scale appearance image at the same time, resulting



(a) Dealing with objects that have been painted with a lot of texture detail 

(b) Semantic correspondence challenge
Figure 10. Limitation examples. Top (a) shows soft edges struggle to retain both the heavy textures details in structure and the texture in
appearance. For example: Owl eye details are lost, affecting identity consistency ((a)-3 column). Wool texture conflicts with the dog’s ear
sketch, causing the ears to merge with the body ((a)-5 column). Bottom (b) shows that we face challenges in the semantic correspondence
task. For example, white feathers on the bird’s abdomen are omitted due to lack of semantic correspondence ((b)-4)). Patching and shuffling
disrupt texture features in the butterfly and camouflage car examples ((b)-5 and 6 columns). Architectural details like windows struggle to
maintain intra-class consistency during generation ((b)-7 column).

in a conflict between the two.

Therefore, we would like to emphasize that we focus
more on dealing with the complexity of key lines, espe-
cially when the detailed structural lines are correlated to
textures. Our collection and processing of the dataset re-
flect our attempt to subdivide the sketch task based on im-
age complexity, which is different from other challenges.
In the processing of ideal target objects, the challenge we
face is mainly the inability to control the precise semantic
correspondence. For example, in the fourth column of Fig-
ure 10(b), the white feathers on the bird’s abdomen are not
preserved due to the lack of semantic correspondence. In

Figure 10(b)-6, about the appearance transfer example of
the camouflage car, the corresponding texture features are
destroyed due to the patching and shuffling operations. In
the last column of Figure 10(b), for the structural details
in the architectural sketches such as windows, we struggle
with intra-class consistency during the generation process.
These challenges highlight the need for further work in han-
dling complex details and semantic correspondence.

7. Additional Analysis
To further enrich the interpretation of our work, we have
included an analysis of the reviewers’ key comments at the
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Figure 11. Generated results by decreasing strokes.

Table 1. Experiments on the depth estimation module. Replacing the Depth estimation module has no significant effect on the results.

DifferSketching
IC: 0.0461-0.2165 FID↓ LPIPS↓ CLIPi↑ PSNR↑ CH↓ GLCM↓ SSIM↑ CD↓

LineArt w/ Depth Anything 211.37 0.23 0.83 19.25 0.62 1.24 0.96 2.48
LineArt w/ MiDaS 183.39 0.23 0.82 19.28 0.64 2.08 0.96 1.97

DreamBooth (Best SOTA) 202.52 0.24 0.77 18.88 0.76 37.48 0.95 30.93

end of the supplementary materials. We believe that the
consideration and response to these questions can improve
the clarity and completeness of our study.

7.1. Experiment of Strokes Decrease
We show an example as shown in Figure 11 where the num-
ber of strokes progressively decreases. It shows that our
work can still maintain stable generation results when the
number of strokes is decreasing.

7.2. Depth Estimation Module
We replaced Depth Anything (2024) with Midas (2019) in
LineArt, and the results (in Table 1) show that performance
remains stable, indicating minimal impact from the depth
estimation choice.

7.3. A Novel Perspective on LineArt: Graphics Ren-
dering

To further explain our ideas, we draw on the key comments
of anonymous reviewers and provide an analogy for LineArt
from another perspective: the traditional graphics rendering
pipeline.

After the analysis of the main text, we decompose the
input line drawings into three levels, including continuous
single lines for area division, double lines for emphasizing
local details, and soft edges representing spatial transition
relationships and high-frequency features of textures. This
design can be compared to the geometry stage in the ren-
dering pipeline, which uses single lines and double lines to
define the shape and contour information of the model. Soft
edges are similar to bump mapping, which is used to en-
hance surface details so that the generated appearance has
more refined appearance features.

In the texture synthesis process of LineArt, the appear-
ance modeling method based on the diffusion model is
adopted, which is similar to the shading process in the ren-
dering pipeline. Specifically, base layer shaping is regarded

as the setting of the basic color of the surface of the object,
which can be compared to the control effect of PBR (physi-
cally based rendering) on the texture material. Surface layer
coloring is similar to texture shading in rendering. By accu-
rately modeling the texture material information, the natu-
ralness and authenticity of the final visual effect are ensured.

7.4. Specific Parameter Settings
Dilation and erosion are basic morphological operations,
with core parameters typically having default configura-
tions in many publicly available algorithms and tools (e.g.,
OpenCV).

Figure 5 of the main text shows how to control the con-
tinuity and closure of the region in the original line image
by controlling the morphological filter. Taking the erosion
filter in the third row as an example, the specific process is
to create a 5x5 two-dimensional array with all elements set
to 1 as the erosion operator and then erode the foreground
object (usually the white area) of the input image. The ero-
sion operator slides on the image to remove bright (white)
objects in the image that are smaller than the structural el-
ement. By comparing the detection results obtained based
on the Canny algorithm in the first and third rows of the
fourth column (the upper and lower limits are 100 and 200,
respectively), it can be clearly seen that the image contour
structure obtained by the erosion operator is visually more
concise and intuitive. In our experiment, we simply arrange
the acquisition of single lines as follows: we obtain them by
performing Canny edge detection on the mask image. This
process can independently decide whether to apply a struc-
ture element with a shape of (5, 5) and all elements with
values 1 to erode the result to ensure alignment with the
double-edge result.

As for the implementation of the double edge, the struc-
tural pattern in the image is first emphasized by the open-
ing operation (combining the erosion operator with a kernel
size of 5 and the dilation operator with a size of 3). Then



the Canny edge detection (same as above) is used to obtain
a double line effect that enhances the visual hierarchy and
continuity.

In our experiment, to obtain soft edges, we created a
Numpy array of shapes (1, 2) as the structure element of
the erosion operation with all elements set to 1. The erosion
operation will reduce the edge part of the Ginit image af-
ter Canny edge detection (the two threshold parameters are
25 and 50, respectively) according to this structure element,
and the result will serve as a high-frequency soft constraint
for subsequent texture generation and spatial transition. We
use the above basic kernels and keep them unchanged in the
experiment.
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