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MAGE : Single Image to Material-Aware 3D via
the Multi-View G-Buffer Estimation Model

Supplementary Material

This supplementary material provides additional infor-001
mation and experiment results of the main paper, “MAGE:002
Single Image to Material-Aware 3D via the Multi-View G-003
Buffer Estimation Model”, including detailed descriptions004
of the implementation details and more visual results to005
complement the experiments reported in the main paper.006

1. More Visual Results of MAGE007

In this section, we present additional visual results of008
MAGE in both 2D multi-view G-buffers estimation and 3D009
relighting.010

2D Multi-view G-buffers Estimation Results. To011
demonstrate the generalization ability of MAGE for esti-012
mating multi-view G-buffers from wild images, we show013
the multi-view RGB images and G-buffers generated by014
MAGE based on a single AI-created image (Fig. 1) and a015
real captured image (Fig. 2). As can be seen, our method016
generates consistent multi-view RGB images and multi-017
view G-buffers for both AI-created and real captured im-018
ages, indicating the robustness of MAGE to out-of-training-019
data images.020

Relighting Results To better demonstrate the quality of021
our reconstruction results, we provide supplementary video022
sequences showing the dynamic relighting of the teaser re-023
sults, where the environment lighting rotates around the z-024
axis. In the video, our results demonstrate a visually pleas-025
ing, natural, and photorealistic appearance, while Mesh-026
Former [4] tends to produce noticeable lighting inconsis-027
tencies and artifacts under dynamic illumination conditions.028
To compare our reconstruction results with existing meth-029
ods, we provide reconstruction and relighting results pro-030
duced by HyperDreamer [8], SyncDreamer [5], and Won-031
der3D [6]. As illustrated in Fig. 3, our method reconstructs032
accurate and consistent PBR materials across various light-033
ing conditions, while other methods suffer from both low-034
quality geometry and lack physically-based rendering ma-035
terials.036

2. Implementation Details037

In this section, we elaborate on the implementation details,038
including the training specifics of our G-buffer estimation039
network, the details of the implementation of the lighting re-040
sponse loss, and the sparse-view 3D reconstruction method-041
ology used to convert the multi-view G-buffers into a final042
3D object with material properties.043

Training Details. As described in Sec.3.2 of the main044

paper, we initialize the G-buffer estimation network from 045
the weights of Zero123++ [7]. Then, we transform the 046
multi-step denoising U-Net into a deterministic single-step 047
U-Net by (1) replacing the latent Gaussian noise with the 048
latent representation of the tiled input RGB image in a 049
3 × 2 grid and (2) removing timestep sampling at each 050
training step and fixing the timestep to T = 999, similar 051
to [1]. The input image is randomly resized in the range of 052
[256×256, 512×512] to adapt to input images with various 053
resolutions during inference. The output G-buffer is a tiled 054
image with a size of 960 × 640 for each view, where each 055
G-buffer component is supervised by a ground truth image 056
with a size of 320 × 320. We train the G-buffer estimation 057
network on our synthetic dataset using image space losses 058
instead of latent space loss. The network is trained for 10K 059
steps with a batch size of 2 and accumulated gradient steps 060
of 2 on 4×H100 GPUs, which equals a total batch size of 061
16. The loss weights λL, λX , λN , λA, λR, λM in Eq.8 of 062
the paper are set to 10.0, 0.5, 0.5, 1.0, 3.0, 3.0, respectively. 063
The learning rate is set to 1 × 10−5, and the training takes 064
about 20 hours. 065

Details of Lighting Response Loss Our lighting re- 066
sponse loss leverages the split-sum approximation from 067
real-time rendering for efficient physically-based re- 068
rendering. Following [2], the lighting integral is approxi- 069
mated as illustrated in Eq. 3 in the main paper, implemented 070
through a hierarchical cube map structure. The base en- 071
vironment map is a high-resolution (typically 6×512×512) 072
cube map with trainable parameters for each texel. To han- 073
dle different material roughness levels efficiently, we main- 074
tain a chain of filtered mipmap levels generated through av- 075
erage pooling, with roughness clamped between 0.08 and 076
0.5 for stable training. 077

The filtering process is fully differentiable and consists 078
of two main components. We use the lowest resolution 079
mipmap level for diffuse lighting with a cosine-weighted 080
integration over the hemisphere. Each mipmap level cor- 081
responds to pre-filtered environment lighting for specular 082
reflections to increase roughness values. This creates a se- 083
quence of increasingly blurred environment maps that ap- 084
proximate the integration of the GGX normal distribution 085
function for different roughness values. 086

During shading, the diffuse component is evaluated by 087
sampling the diffuse cube map using the surface normal. 088
The specular component combines multiple terms: view- 089
dependent reflection vector, a pre-computed BSDF lookup 090
table built using the view angle, and roughness to obtain 091
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Figure 1. Multi-view RGB images and G-buffers generated by MAGE. All inputs are AI-created images. We only show two novel views
here, while MAGE generates six novel views at inference.
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Figure 2. Multi-view RGB images and G-buffers generated by MAGE. All inputs are real captured images. We only show two novel views
here, while MAGE generates six novel views at inference.

the Fresnel-geometry term. Based on the material rough-092
ness, the specular environment lookup uses tri-linear filter-093
ing between appropriate mipmap levels. The final color094
combines both diffuse and specular terms, taking into ac-095
count the material’s metallic parameter which determines096

the ratio between specular and diffuse reflection. This im- 097
plementation enables efficient all-frequency lighting esti- 098
mation while maintaining compatibility with standard real- 099
time rendering pipelines and physically based materials. 100

Sparse-View 3D Reconstruction. For sparse-view 3D 101
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reconstruction, we use Nvdiffrast [3] for mesh optimiza-102
tion from G-buffers. Our sparse-view 3D reconstruction103
pipeline takes as input the multi-view G-buffers predicted104
by our network, which are arranged in a n× 6 grid contain-105
ing n views and six domains G-buffers (RGB, normal map,106
depth, albedo, roughness, and metallic) for each view. We107
first obtain an initial mesh by converting the predictions to108
a visual hull using known camera parameters and masks ex-109
tracted from images. The core of our reconstruction process110
utilizes Nvdiffrast as the differentiable renderer to optimize111
both mesh vertices and texture coordinates. The optimiza-112
tion objective combines multiple supervision signals from113
our predicted G-buffers, including RGB appearance match-114
ing supervised by albedo, roughness, and metallic maps and115
a normal / depth alignment supervised by normal and depth116
maps. We implemented a normal / depth renderer for nor-117
mal and depth alignment. Specifically, we minimize the dif-118
ference between the rendered attributes and our predicted119
G-buffers through differentiable rendering to optimize.120

We employ Xatlas to automatically generate UV param-121
eterization for the optimized mesh for the material assign-122
ment. We project the predicted G-buffer attributes (albedo,123
roughness, metallic) onto the UV space to obtain the final124
ready-to-use 3D meshes with PBR materials in obj format.125
Using the angle-weighted averaging method, we blend mul-126
tiple view contributions to handle view-dependent effects127
and potential inconsistencies across views. The final mate-128
rial properties are stored as 1024×1024 resolution UV maps129
for preserving fine details from our G-buffer predictions.130
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Figure 3. Comparison between the single image to 3D generation results of more existing methods and MAGE, under two novel lighting
conditions.
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