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MAGE % : Single Image to Material-Aware 3D via
the Multi-View G-Buffer Estimation Model

Supplementary Material

This supplementary material provides additional infor-
mation and experiment results of the main paper, “MAGE:
Single Image to Material-Aware 3D via the Multi-View G-
Buffer Estimation Model”, including detailed descriptions
of the implementation details and more visual results to
complement the experiments reported in the main paper.

1. More Visual Results of MAGE

In this section, we present additional visual results of
MAGE in both 2D multi-view G-buffers estimation and 3D
relighting.

2D Multi-view G-buffers Estimation Results. To
demonstrate the generalization ability of MAGE for esti-
mating multi-view G-buffers from wild images, we show
the multi-view RGB images and G-buffers generated by
MAGE based on a single Al-created image (Fig. 1) and a
real captured image (Fig. 2). As can be seen, our method
generates consistent multi-view RGB images and multi-
view G-buffers for both Al-created and real captured im-
ages, indicating the robustness of MAGE to out-of-training-
data images.

Relighting Results To better demonstrate the quality of
our reconstruction results, we provide supplementary video
sequences showing the dynamic relighting of the teaser re-
sults, where the environment lighting rotates around the z-
axis. In the video, our results demonstrate a visually pleas-
ing, natural, and photorealistic appearance, while Mesh-
Former [4] tends to produce noticeable lighting inconsis-
tencies and artifacts under dynamic illumination conditions.
To compare our reconstruction results with existing meth-
ods, we provide reconstruction and relighting results pro-
duced by HyperDreamer [8], SyncDreamer [5], and Won-
der3D [6]. As illustrated in Fig. 3, our method reconstructs
accurate and consistent PBR materials across various light-
ing conditions, while other methods suffer from both low-
quality geometry and lack physically-based rendering ma-
terials.

2. Implementation Details

In this section, we elaborate on the implementation details,
including the training specifics of our G-buffer estimation
network, the details of the implementation of the lighting re-
sponse loss, and the sparse-view 3D reconstruction method-
ology used to convert the multi-view G-buffers into a final
3D object with material properties.

Training Details. As described in Sec.3.2 of the main

paper, we initialize the G-buffer estimation network from
the weights of Zerol23++ [7]. Then, we transform the
multi-step denoising U-Net into a deterministic single-step
U-Net by (1) replacing the latent Gaussian noise with the
latent representation of the tiled input RGB image in a
3 x 2 grid and (2) removing timestep sampling at each
training step and fixing the timestep to 7' = 999, similar
to [1]. The input image is randomly resized in the range of
[256 x 256, 512 x 512] to adapt to input images with various
resolutions during inference. The output G-buffer is a tiled
image with a size of 960 x 640 for each view, where each
G-buffer component is supervised by a ground truth image
with a size of 320 x 320. We train the G-buffer estimation
network on our synthetic dataset using image space losses
instead of latent space loss. The network is trained for 10K
steps with a batch size of 2 and accumulated gradient steps
of 2 on 4xH100 GPUs, which equals a total batch size of
16. The loss weights A\;, Ax, An, Aa, Ar, Ays in Eq.8 of
the paper are set to 10.0,0.5,0.5, 1.0, 3.0, 3.0, respectively.
The learning rate is set to 1 x 1075, and the training takes
about 20 hours.

Details of Lighting Response Loss Our lighting re-
sponse loss leverages the split-sum approximation from
real-time rendering for efficient physically-based re-
rendering. Following [2], the lighting integral is approxi-
mated as illustrated in Eq. 3 in the main paper, implemented
through a hierarchical cube map structure. The base en-
vironment map is a high-resolution (typically 6x512x512)
cube map with trainable parameters for each texel. To han-
dle different material roughness levels efficiently, we main-
tain a chain of filtered mipmap levels generated through av-
erage pooling, with roughness clamped between 0.08 and
0.5 for stable training.

The filtering process is fully differentiable and consists
of two main components. We use the lowest resolution
mipmap level for diffuse lighting with a cosine-weighted
integration over the hemisphere. Each mipmap level cor-
responds to pre-filtered environment lighting for specular
reflections to increase roughness values. This creates a se-
quence of increasingly blurred environment maps that ap-
proximate the integration of the GGX normal distribution
function for different roughness values.

During shading, the diffuse component is evaluated by
sampling the diffuse cube map using the surface normal.
The specular component combines multiple terms: view-
dependent reflection vector, a pre-computed BSDF lookup
table built using the view angle, and roughness to obtain
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Figure 1. Multi-view RGB images and G-buffers generated by MAGE. All inputs are Al-created images. We only show two novel views
here, while MAGE generates six novel views at inference.
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Figure 2. Multi-view RGB images and G-buffers generated by MAGE. All inputs are real captured images. We only show two novel views
here, while MAGE generates six novel views at inference.
092 the Fresnel-geometry term. Based on the material rough- the ratio between specular and diffuse reflection. This im- 097
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reconstruction, we use Nvdiffrast [3] for mesh optimiza-
tion from G-buffers. Our sparse-view 3D reconstruction
pipeline takes as input the multi-view G-buffers predicted
by our network, which are arranged in a n X 6 grid contain-
ing n views and six domains G-buffers (RGB, normal map,
depth, albedo, roughness, and metallic) for each view. We
first obtain an initial mesh by converting the predictions to
a visual hull using known camera parameters and masks ex-
tracted from images. The core of our reconstruction process
utilizes Nvdiffrast as the differentiable renderer to optimize
both mesh vertices and texture coordinates. The optimiza-
tion objective combines multiple supervision signals from
our predicted G-buffers, including RGB appearance match-
ing supervised by albedo, roughness, and metallic maps and
a normal / depth alignment supervised by normal and depth
maps. We implemented a normal / depth renderer for nor-
mal and depth alignment. Specifically, we minimize the dif-
ference between the rendered attributes and our predicted
G-buffers through differentiable rendering to optimize.

We employ Xatlas to automatically generate UV param-
eterization for the optimized mesh for the material assign-
ment. We project the predicted G-buffer attributes (albedo,
roughness, metallic) onto the UV space to obtain the final
ready-to-use 3D meshes with PBR materials in obj format.
Using the angle-weighted averaging method, we blend mul-
tiple view contributions to handle view-dependent effects
and potential inconsistencies across views. The final mate-
rial properties are stored as 1024x1024 resolution UV maps
for preserving fine details from our G-buffer predictions.
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Figure 3. Comparison between the single image to 3D generation results of more existing methods and MAGE, under two novel lighting
conditions.
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