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Abstract
In the supplementary material, we discuss further details

and provide more results that are not included in the main
paper. In Appendix A, we provide more details of our model
setting and structure. In Appendix B, we discuss further de-
tails and provide visualization for our dataset processing
pipeline. In Appendix C, we present more results on qual-
itative comparison with monocular reconstruction methods
and illustration of our cross-view consistency preservation
ability.

A. Implementation Details

In this section, we specify the details regarding the model
implementation and the experiment settings.

A.1. Model Implementation
Keypoints Conditioning. We use a small 3-layer convo-
lutional network to process the keypoints condition, down-
sampling the keypoints visualization image by 8x and align-
ing it with the channel of the denoiser U-Net after the
conv in block. Each downsampling is achieved with two
convolutional layers. The final output is processed with a
conv out convolutional layer, which is zero-initialized to
allow this condition to be smoothly integrated into the U-
Net. We found that an additional branch like ControlNet-
[17] is unnecessary. Directly adding the processed condi-
tion to the U-Net features yields satisfactory training results.
VAE Feature Encoder. The VAE feature encoder is very
similar to the diffusion U-Net down-sampling blocks with-
out Attention layers. At each resolution scale, there are 2
layers of ResnetDownsampleBlock2D, whose number
of channels is matched with that in the U-Net. We use the
last features before down-sampling in each residual block
to be fused into the U-Net through VAE attention.
Implementation Details. Our model is initialized with Sta-
ble Zero123 [2] pretrained weights, and optimized using

ϵ-prediction. Notably, since the SDXL-VAE [13] can pro-
duce NaN under fp16 precision, we utilize the fp16-fix
version [1] to support mixed-precision training. Our model
supports sparse-view training. We randomly sample seven
views, including the reference, in each training batch. The
batch size on each GPU is 1, and we use 8 NVIDIA-A100-
80GB GPUs to train 150,000 iterations without gradient ac-
cumulation, which takes about 7 days. Our model can gen-
erate 16 views simultaneously during inference. It employs
a Trailing sample steps selection method to minimize
the signal-to-noise ratio (SNR) at the beginning of the de-
noising process. We use DDIM sampler with 50 steps and a
CFG scale of 3.0.

A.2. Experiment Setting

Baselines. For quantitative experiments, we compare our
method with Stable Zero123 [2], SyncDreamer [11], Won-
der3D [12], and SV3D [15]. For Wonder3D with pretrained
weights, as it generates six views at a time, we split the 15
non-reference test views into three batches, each combined
with the reference view for the generation. We re-train Sta-
ble Zero123 and Wonder3D on DNA-Rendering at the res-
olution of 256×256. Wonder3D is only trained in the color
domain since ground-truth normal maps are not available.
We only compare the results of MagicMan [7] qualitatively
as its preset views cannot align with the test setting.
Metrics. Since most of the previous multi-view diffusion
models only generate at a resolution of 256, we also re-
size our results to calculate metrics at this resolution for
fair comparison. Moreover, to show the advantage of high-
resolution generation, we also compute metrics at a reso-
lution of 1024. For both resolutions, we include PSNR,
SSIM [16], and LPIPS [18] metrics to compare the gen-
erated results with the ground-truth images. For the 1024
category, we use Patch-FID (P-FID) [3, 6, 10] instead of
FID [8] as a metric for generation quality. FID resizes im-
ages to 299×299 before calculation, which does not reflect
MEAT’s advantage at high resolutions. Instead, we split



each image into a 4×4 grid of 256×256 patches and select
the middle two columns, yielding eight patches per image.
The calculation is based on the patch set. In the 256 cate-
gories, we also use the PPLC metric proposed by Free3D
[20] to evaluate cross-view consistency in multiview gener-
ation. We exclude it in the 1024 category because upsized
blurry results gain an unfair advantage in this metric.

B. DNA-Rendering for Multiview Generation
In this section, we present the full details of the novel ideas
proposed to harness multiview human video dataset DNA-
Rendering [4] for multiview diffusion training. We con-
struct our training data using the multiview human dataset
DNA-Rendering [4], which provides 15 FPS multiview
videos of human motion. By sampling one set of frames
every five frames, we generate over 20,000 sets of multi-
view images. The first partition, containing 2,000 samples,
is reserved for testing, while the second partition is used for
training. While this larger dataset offers a significant advan-
tage, the multiview setting brings additional challenges. We
address three primary issues: (1) selecting the front view
for monocular reconstruction, (2) adapting the monocular
reconstructed mesh to the calibrated coordinate system, and
(3) cropping the images with corresponding adjustments to
the camera calibration parameters.

B.1. Frontal Camera Selection
For each frame of multiview images in the DNA-
Rendering [4] dataset, we need to first determine which
view is the “frontal” one. This config is utilized in monoc-
ular reconstruction, training views sampling, and inference.
Since the dataset provides the SMPL-X coefficients and
camera calibration parameters Rv and Tv for each view, we
can derive the global orientation d of the human body, the
3D coordinates G of the pelvis, and the camera coordinates
Cv , where

Cv = −R−1
v Tv.

We define the frontal view as the viewpoint where the angle
between the line connecting the camera’s optical center to
the pelvis and the global orientation is minimized, i.e.

front view← argmax
v

d ·GCv

∥d∥∥GCv∥
(1)

B.2. Mesh Adaptation
To ensure consistent mesh quality during both training and
inference and to prevent the model from overly relying on
the accuracy of the centric geometric representation, we
use monocular reconstruction from the selected frontal im-
age above to extract the centric mesh for training. We use
PIFuHD[14] for its balance of speed and quality. However,
monocular reconstruction typically assumes a specific po-
sition and orthographic projection for the frontal camera,

which differs from our dataset where the frontal camera is
perspective and can be positioned variably. Consequently,
we need to determine a transformation TF to align the mesh
with the world coordinate system of the dataset.

Our adaptation approach is based on the following rule:
Pp of each pixel p in the reference view, after transforma-
tion TF and reprojection, should return to its original posi-
tion in its own view and reach the feature-matching point
in adjacent views. These two relationships establish an op-
timization objective for TF with a unique optimal solution.
We use RoMa [5] to detect all feature-matching pairs and
apply gradient descent to solve TF.

Specifically, we assume that the transformation TF for
each vertex P consists of a scaling S, rotation R, and trans-
lation t:

S = diag(s), s = [sx, sy, sz], (2)
R = rot6d(c1, c2), (3)
p′ = TF(P ) = R(SP ) + t. (4)

We use rot6d rotation representation [21] for more stable
optimization. We can then define the re-projection process
Π̃v of a frontal-view pixel p into the view v.

Π̃v(p) = Πv(TF(p→ P )). (5)

Here p → P indicates the inverse orthographic rasteriza-
tion process and Πv is the projection to view v as is de-
scribed in Eq.(6) in the main paper. Let v = 1 be the frontal
view. We use two types of alignment to build the optimiza-
tion target:
1. Π̃1(p) - Pixels return to their original positions.
2. Π̃v(p) - Pixel p on the frontal view is matched with pixel

qv on view v.
We use RoMa [5] to detect such (p, qv) pairs. All the pixels
p that do not intersect with the mesh are filtered out. The
pixel values are normalized to [0, 1] based on the resolution
of the raw image. Finally, we can solve the transformation
TF through:

argmin
s,c1,c2,t

∑
p

∥p− Π̃1(p)∥22 +
∑
p,qv

∥qv − Π̃v(p)∥22. (6)

We initialize these parameters with the assumption of
zero translation, identical scaling, and an aligned coordinate
system. It yields s0 = [1, 1, 1], t0 = 0, and

R0 =

1 0 0
0 −1 0
0 0 −1

 ·Rv=1

−1

(7)

Here Rv=1 is the calibrated extrinsic rotation matrix of the
frontal camera in the DNA-Rendering [4] dataset. DNA-
Rendering adopts the opencv camera coordinate system
convention, which has an opposite direction of y-axis and
z-axis. We show visualization results in Fig. 1.



(a) Mesh location before adaptation.

(b) Mesh location after adaptation.

Figure 1. Mesh Adaptation. Although the monocular reconstructed human mesh inevitably exhibits certain deviations from the ground
truth, our mesh adaptation method can robustly align it to the dataset’s coordinate system. Our MEAT model, trained using this data,
effectively mitigates the interference of geometric noise in human meshes during multi-view image generation.

B.3. Image Cropping

Existing multiview diffusion models place the object at
the origin of the world coordinate system when rendering
datasets, and position the camera on a fixed-radius sphere
centered at this origin. This approach simplifies the view-
point representation to just azimuth and elevation, reducing
training complexity.

During training, we use the 1-meter-high circular cam-
era array of DNA-Rendering to simulate the zero-elevation
rendered data. These cameras are all oriented toward the
calibrated center of the world coordinate system. However,
this center often does not align precisely with the person’s
position, resulting in variable positioning within the images.
This variability introduces ambiguity when using the cam-
era representation of existing multiview diffusion models.

To address this issue, we propose cropping the images
based on the pelvis position. We align the pelvis joint from
SMPL-X in each frame to the center of the pixel grid. To
maintain consistency with the spherical camera arrange-
ment, we assume the subject has the same height in each
pixel plane since all cameras have the same height. We set
the cropping radius to 1.3× the maximum height difference
between any keypoint and the pelvis in each pixel plane:

Rv = 1.3 ·max
P
|Πv(P )y −Πv(Ppelvis)y|. (8)

The cropped images from each view are then resized to the
same resolution. Since only cropping and resizing are in-
volved, we only need to adjust the principal point coordi-
nates in the camera intrinsics and normalize the camera to
the NDC (Normalized Device Coordinate) system.

C. More Results

C.1. Cross-view Consistency Preservation

We show the generated results of models with and without
mesh attention modules in Fig. 2. In the multiview diffusion
model, the generation of front-facing regions leverages in-
formation from reference viewpoints, resulting in reduced
randomness. Conversely, the generation of the backside
relies more heavily on the model’s generative capabilities,
thereby exhibiting greater randomness inherent to diffusion
models. As is shown in Fig. 2, one-view-at-a-time models
lacking mesh attention frequently make random selections
among different modes in local structures, resulting in in-
consistencies across viewpoints. The mesh attention mod-
ule effectively mitigates this issue, achieving better cross-
view consistency preservation.

C.2. Monocular Reconstruction Methods

In this section, we compare the novel view generation re-
sults of our MEAT diffusion model with monocular recon-
struction methods like SiTH [9] and SIFU [19]. The quali-
tative comparison results are shown in Fig. 3. For monocu-
lar reconstruction methods, novel view images are rendered
from textured human meshes, thereby inherently ensuring
perfect cross-view consistency.

However, due to the challenges associated with accu-
rate geometric estimation, monocular reconstructed human
meshes often exhibit reduced realism when dealing with rel-
atively loose clothing, thus the results after texture mapping
are unsatisfactory. Our MEAT model utilizes such coarse
human meshes solely as a medium for cross-view feature
fusion; the generated images themselves are not rendered
from any explicit geometric representations, resulting in a
noticeable enhancement in realism.
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(a) w/o Mesh Attention

(b) with Mesh Attention

Figure 2. Cross-view Consistency Preservation. Models without mesh attention adhere to a one-view-at-a-time approach. Due to the
stochastic nature of diffusion models, generating the backside often fails to maintain local structural consistency across different viewpoints.
The mesh attention module significantly enhances the cross-view consistency preservation.
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Figure 3. Comparison with Monocular Reconstruction Methods. In the novel view generation results for human bodies, compared to
monocular reconstructed meshes, the multiview images generated by our MEAT diffusion model exhibit significant advantages in geometric
plausibility, geometric details, texture details, and clarity. Please zoom in for details.
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