MaRI: Material Retrieval Integration across Domains

Supplementary Material

This supplementary material provides additional details
and insights into the MaRI framework. Section 1 outlines
the implementation details, including training configurations
and the use of pre-trained DINOv2 [8] backbones. Section 2
presents an analysis of how different backbone architectures
impact material retrieval performance on both trained and
unseen datasets. Practical applications of MaRlI, such as
assigning materials to 3D models for design workflows, are
demonstrated in Section 3, showcasing the system’s versa-
tility and ease of use. In addition, Section 4 reports a user
study, and Section 5 offers further discussion on limitations,
and potential future improvements.

1. Implementation Details

We use DINOvV2 as the backbone for both the image and
material encoders, initialized with pre-trained weights. The
training process consists of two main stages: first, the model
is fine-tuned on the synthetic dataset for 1 epoch using the
Adam optimizer with a learning rate of 1 x 10~%. This initial
phase helps establish a robust baseline. Next, the model un-
dergoes fine-tuning on the real-world dataset for 25 epochs
at a reduced learning rate of 1 x 1075 to enhance general-
ization by capturing more intricate real-world features. To
facilitate effective alignment in the shared feature space, the
temperature parameter 7 in the contrastive loss is set to 0.07.
The dataset is divided into 90% for training and 10% for
validation, and a batch size of 256 is employed. The entire
process is conducted on four NVIDIA A100 GPUs (80GB
each), completing within 3 hours.

2. Effect of Backbone Variations

The performance of different backbone architectures for
material retrieval is summarized in Table 1. DINOv2 demon-
strates the strongest overall performance, achieving top-1
instance accuracy (T1I) of 26.0% and top-5 instance accu-
racy (T5I) of 90.0% on the Trained dataset, along with 54.0%
and 89.0% on the Unseen dataset, respectively.

Table 1. Backbone comparison for material retrieval on Trained
and Unseen datasets. Best values are highlighted in blue.

Backbone | Trained | Unseen
| TII TSI  TIC T3loU | TII TSI

ResNet50 [4] 75% 280% 645% 058 | 30.0% 60.5%
ViT [1] 150% 335% 545% 067 | 21.0% 650%
Swin Transformer [5] | 14.0% 41.5% 77.0%  0.68 | 385% 77.0%
ConvNeXt [6] 165% 420% 70.0% 067 | 350% 73.5%
EfficientNet [11] 85% 215% 520% 055 | 22.0% 54.0%
CLIP [9] 120% 445% 61.0% 068 | 29.5% 72.5%

DINOV2 [8] 260% 90.0% 81.5% 0.77 | 54.0% 89.0%

Table | highlights DINOv2’s capability to effectively cap-
ture complex material characteristics and generalize across
diverse data distributions. Other architectures show moder-
ate performance, reflecting limited generalization capacity.
These findings emphasize the critical role of backbone se-
lection in enhancing material retrieval tasks, with DINOv2
emerging as the most effective backbone for bridging the
synthetic-to-real domain gap.

3. Applications

Having established the effectiveness of MaRI in retrieving
materials accurately, we now highlight a practical application
that leverage MaRI’s capabilities in real-world 3D design
workflows. MaRI empowers users to effortlessly assign de-
sired materials to different parts of a 3D model by providing
a streamlined paradigm for material retrieval and application.
For instance, a user working with a 3D chair model can spec-
ify preferred materials—such as leather for the seat, metal
for the legs, and wood for the armrests—through simple
input reference images. MaRlI efficiently retrieves matching
physically based rendering (PBR) materials and applies them
to the respective parts. The workflow involves the following
steps:

1. Object Segmentation: The 3D model is segmented into
distinct components (e.g., seat, legs, and armrests) based
on its structural design or user annotations.

2. Material Retrieval: Users provide reference images for
their desired material patterns, such as leather textures or
wood grains. MaRI leverages its robust library to retrieve
accurate and visually consistent matches.

3. Material Application: The retrieved materials are
mapped and applied to the segmented parts of the model,
enabling users to visualize their design with photorealistic
fidelity.

This process, exemplified through the chair model in Fig-
ure 2, highlights MaRT’s ability to offer users an intuitive and
efficient workflow for realizing their creative goals. MaRI
transforms the traditionally labor-intensive process, allowing
users to quickly locate and apply desired materials, resulting
in outcomes that closely match their creative intent.

4. User Study

We conducted a user study with 20 participants (40% de-
signers, 30% researchers, and 30% general users). Each
participant provided three material images as queries, and
the top-5 retrievals from MaRI and baseline methods were
rated on relevance, realism, and perceptual consistency using
a 5-point Likert scale. Table 2 shows that MaRI achieved
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Figure 1. Comparison between Material Palette and MaRI.

Table 2. User study average scores for top-k retrievals. Best values
are highlighted in blue.

Method Top-1 Top-3 Top-5
MaPa [13] 2.60 3.05 3.80
Make-it-Real [2]  3.25 3.50 3.90
MaRI 4.15 4.50 4.85

consistently higher scores across all top-k retrieval results.
These results indicate that our method retrieves materials
that are more relevant, realistic, and perceptually consistent
compared to the baselines.

5. Discussion

We further analyze the behavior of our retrieval system. As
shown in Figure 7, the last row presents a case where a query
for sponge material returns several sand-like materials. This
outcome is due to the limited number of sponge samples
available in our gallery, which causes the system to favor
visually similar textures. The case highlights a potential limi-
tation of our approach compared to direct generative methods
like Material Palette [7], which can synthesize a broader va-
riety of material appearances. However, our retrieval-based
approach is faster than diffusion-based methods. While Ma-
terial Palette generates novel material images using diffusion,
our method retrieves assets from an existing database. This
distinction is crucial, as it ensures that our results are not
only of high quality but also readily support PBR rendering.
Figure 1 shows a comparison case.

In our work, we adopt material spheres as the shape rep-
resentation, which is a widely used choice among content
creators. MaRlI effectively captures essential material prop-
erties and supports robust retrieval performance. We be-
lieve that exploring alternative representations, such as blob
[12] or Havran’s [3] shapes, may further enhance perceptual
alignment [10] by capturing subtle material nuances. This
presents a promising direction for future research.
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Figure 2. Material assignment and rendering for a 3D chair model.

Figure 3. Material assignment and rendering for a 3D plant model.
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Figure 4. Material assignment and rendering for a 3D desk model.
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Figure 5. Material assignment and rendering for a 3D bucket model.
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Figure 6. Top-5 material retrieval results for real-world images.



Figure 7. Top-5 material retrieval results for real-world images.
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