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1. More visualizations about VQAMask

In this section, we show more visualization examples in Fig-
ure 1 and 2. Each example includes (a) Input image, (b) At-
tention w/o MGM, (c) Attention with MGM, (d) Prediction
Mask, and (e) Our generated label. Specifically, these atten-
tion maps in the “Attention w/o MGM” column (b) are ob-
tained from the version without our proposed mask genera-
tion module (MGM). These attention maps in the “Attention
with MGM” column (c) are obtained from the version using
our proposed mask generation module (MGM). The “Pre-
dicted Mask” column (d) exhibits the final predicted mask,
which delineates all text locations in the document, with
spatially-aware supervision by our generated labels (e).
Example A:

Figure 1 exhibits the visualizations from the task: Read-
ing Full Text. Given an image, the model needs to predict
all visual texts sequentially. Specifically, the image, ques-
tion, and answer are embedded into a question-answer tem-
plate like:

QUESTION: Recognize all texts.|Convert
the image into Markdown format.
ANSWER: BRAND R6D SALEM LTS 85.

In this task, our model combines the question and answer
to activate the visual text regions of the input image. When
comparing the attention maps from the (b) and (c) columns,
we observed MGM promotes the alignment between vi-
sual tokens and language tokens. In other words, visual
tokens corresponding to the visual text regions are further
highlighted. The highlighted attentions allow our model to
capture more important information for subsequent visual
question answering.

Example B:

*These authors contributed equally. ®*Corresponding Author.

Figure 2 exhibits the examples from the task: Reading
Partial Text within Localization. Similarly, the question-
answer template is formulated:

QUESTION: Identify the text within the
bounding box <bbox> 109, 85, 595, 389
</bbox>.

ANSWER: 9 Nov.22 Morehead State Win 40
6 8-1.

In this task, the model needs to understand the signifi-
cance of the number within the <bbox>, </bbox> tags.
The number represents a box and its specific location in the
image. Only by understanding this can the model accurately
predict the text in the box. Obviously, this task is more
challenging. As shown in the second column, the version
without our proposed MGM is difficult to find the specific
location of the given box. If the location is incorrect, the
prediction result will also be wrong. In the version with
MGM, with explicit position supervision (presented in the
last column), the interaction between language and image
can effectively promote the model’s understanding of these
tokens. As a result, the obtained attention maps are more
accurate.

Example C:

In Figure 3, we further exhibit the qualitative compari-
son results of using and not using MGM. Without spatially-
aware supervision, the outputs from the version without
MGM may disproportionately rely on the powerful seman-
tic context capabilities of large language models (LLMs)
rather than optimizing image features from visual encoders,
potentially leading to model hallucinations. As discussed
above, our proposed VQAMask optimises two tasks simul-
taneously: VQA-based text parsing and mask generation.
The former allows the model to implicitly align images and
text at the semantic level. The latter introduces an additional



mask generator (discarded during inference) to explicitly
ensure alignment between visual texts within images and
their corresponding image regions at a spatially-aware level.
Together, they can prevent model hallucinations when pars-
ing visual text and effectively promote spatially-aware fea-
ture representation learning.

2. More examples compared to other MLLMs

As shown in Figure 4, we present more qualitative visual-
ization results to demonstrate Marten’s capabilities in vari-
ous VQA tasks. Marten analyzes the question, identifies the
key elements in the image relevant to answering the ques-
tion, and exhibits the impressive localization ability to per-
ceive even minute text within the image.

3. Explanation on mask generation

We only enable mask generation in stage 1 due to all an-
swers of text parsing tasks appearing directly in the im-
age. In contrast, stage 2 involves reasoning tasks (e.g., How
much taller is the red bar than the blue bar?), where an-
swers do not appear in the image. Thus, mask generation is
reasonably omitted due to unfeasible experiments.

For tasks like text grounding (boxes in answers) and
reading partial text within localization (boxes in ques-
tions), we conduct the mask generation pipeline on the lo-
cal image within provided boxes to create local masks. For
other parsing tasks where all visual texts are required, we
provide global masks. Thus, both local and global masks
are provided in our dataset.

4. Mask construction differences from SIGA

SIGA is initially designed to support standard text instance
images cropped from the whole image based on GT boxes.
This faces challenges when dealing with incomplete text
instance images cropped by pseudo boxes generated from
PaddleOCR, due to the scarcity of box annotations. Thus,
we propose global judgment conditions to replace edge con-
ditions of SIGA.
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Figure 1. Visualizations of some key items in Reading Full Text task, including (a) Input image (b) Attention without MGM (c) Attention
with MGM (d) Prediction Mask and (e) Our generated label.
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Figure 2. Visualizations of some key items in Reading Partial Text within Localization task, including (a) Input image (b) Attention without
MGM (c) Attention with MGM (d) Prediction Mask and (e) Our generated label.
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Figure 3. Qualitative comparison results of using and not using MGM.
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Figure 4. Visualization of Marten’s comparison with GPT-4o, internvl2-8B on VQA tasks.
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