Masked Point-Entity Contrast for Open-Vocabulary 3D Scene Understanding

Supplementary Material

A. Implementation Details

We provide implementation and training details of our pro-
posed Masked Point-Entity Contrast (MPEC) model.

Model Architecture For open-vocabulary 3D semantic
segmentation and zero-shot visual grounding experiments,
we ensure a fair comparison with existing methods by em-
ploying SparseUNet16 and SparseUNet32 [60] as the 3D
encoder and the frozen CLIP [11] as the text encoder. The
vision-language adapter consists of a two-layer MLP. For
downstream fine-tuning tasks, we train a MinkUNet34C [1]
re-implemented with SpConv [3] following Pointcept [2]
using the same point-entity contrastive supervision.

For fine-tuning on low-level perception tasks, we build
our experiments using the point cloud perception codebase
Pointcept [2]. Specifically, for all the semantic segmenta-
tion tasks, including closed-set experiments on ScanNet [4],
ScanNet200 [12] , we add a single linear layer as the classi-
fication head and utilize the cross-entropy loss for supervi-
sion. For instance segmentation tasks, we follow previous
works [7, 13—15] to adopt PointGroup [9] as the instance
segmentation head.

For fine-tuning high-level reasoning tasks, we select
PQ3D [18], a state-of-the-art framework for reasoning tasks
for indoor scenes as the baseline. Specifically, we replace the
voxel encoder of PQ3D with our MinkUNet34C while main-
taining other configurations, and fine-tune on the reasoning
datasets.

View Generation and Masking Strategy We follow
the view generation pipeline and mask strategy in
MSC [14]. For a given 3D point cloud, we first cre-
ate two copies and apply separate random augmenta-
tion sequences to each, generating two distinct views
of the same scene. The augmentation sequence, de-
tailed in Tab. A.1, consists of three main components:
spatial augmentations , photometric augmentations and

sampling augmentations .

For the masking strategy, we adopt the approach proposed
in MSC [14], setting the grid size to 0.1m to partition the
original coordinates into evenly spaced, non-overlapping
grids. For each view, 40% of the grids are selected and
the features inside are masked and replaced with learnable
tokens. Importantly, the selected grids for the two views are
mutually exclusive, ensuring no overlap.

Table A.1. View Generation Pipeline.

Augmentation ‘ Value

random rotate angle=[-1/64, 1/64], axis="x’, p=1
random rotate angle=[-1/64, 1/64], axis="y’, p=1
random flip p=0.5

sigma=0.005, clip=0.02
ratio=0.4, p=0.8
ratio=0.4, p=0.8
ratio=0.2, p=0.8
ratio=0.02, p=0.8
std=0.05, p=0.95

random coord jitter

random color brightness jitter
random color contrast jitter
random color saturation jitter
random color hue jitter
random color gaussian jitter

grid sample grid size=0.02

random crop ratio=0.6
center shift n/a
color normalize n/a

Table A.2. Fine-Tuning Setting on Low-Level Perception Tasks.

Config Value
optimizer SGD
scheduler cosine decay
weight decay le-4
optimizer momentum 0.9
batch size 12
warmup epochs 40
epochs 800

Training For the point-entity contrastive learning, we uti-
lize the AdamW optimizer with a learning rate of 1 x 103
for 500 epochs with a cosine warm-up period of 200 steps.
During training, we set a batch size of 4 scenes for each
GPU and sample 64 text descriptions for each scene. To
balance the scale of cross-entropy loss and binary cross-
entropy loss in L), we empirically set o and 3 to 1.0 and
6.0, respectively. All the contrastive learning experiments
are performed on 4 NVIDIA-A100 GPUs with the longest
training taking less than 4 days.

For the downstream fine-tuning experiments, we conduct
all the low-level perception tasks on Pointcept [2] and all the
high-level reasoning tasks on PQ3D [18].

The general fine-tuning setting for low-level perception
tasks is shown in Tab. A.2. We adjust the learning rate
based on the task. Specifically, for full-set semantic and
instance segmentation fine-tuning experiments on ScanNet
and ScanNet200, the learning rate is set to 0.2.

For training PQ3D on high-level reasoning tasks, we train
the model on multiple 3D vision-language tasks including
visual grounding, question answering, and dense captioning
for 50 epochs. The model architecture uses a hidden dimen-



Table A.3. Partial Per-Category Performance on ScanNet [4]. We compare the IoU (%) and accuracy (%) with previous SOTA

RegionPLC [16] of each category.

chair bookshelf counter toilet sink shower curtain curtain
IoU Acc | IoU Acc | IoU Acc | IoU Acc | IoU Acc | IoU Acc IoU Acc
RegionPLC \ 754 829 \ 72.9 96.3 \ 49.0 64.6 \ 64.2 98.6 \ 38.1 842 \ 433 90.7 \ 46.5 514
MPEC | 838 855 | 803 923 | 564 652 | 856 98.2| 485 856|616 871 | 661 73.1

sion of 768 and 4 query decoder layers. Optimization is
performed using the AdamW optimizer with a learning rate
of 1 x 10™%, a batch size of 16, and momentum parameters
B1 = 0.9 and B> = 0.98. The loss balancing weights are set
t0 Agen = 1 and Agrq = 10.

B. Additional Per-category Performance Analy-
ses on ScanNet

We provide part of the per-category performance on Scan-
Net in Tab. A.3. As can be seen, though RegionPLC [16]
and MPEC achieve similar accuracies on many categories,
MPEC continuously outperforms RegionPLC on the IoU
metric by a large margin, indicating fewer false positives and
better geometric understanding. Superior results on shower
curtain and curtain further highlight MPEC’s strong spatial
reasoning and semantic understanding ability.

C. Additional Experiment Results for Zero-shot
3D Visual Grounding

In Fig. 3 of the main paper, we observe that MPEC still
faces challenges when dealing with complicated ground-
ing texts qualitatively. We attribute this phenomenon to the
limitations of the fixed CLIP [11] text encoder. This sec-
tion provides quantitative analysis on zero-shot 3D visual
grounding experiments on SceneVerse [8] to support this
hypothesis.

Experiment Settings Following the SceneVerse-val zero-
shot setting in [8], we remove MultiScan data during training
for fair comparisons. We provide the model ground-truth
object proposals and use the pooled feature Fyp, for each
object to match with the grounding text for predictions. We
test the grounding accuracy of different text encoders, i.e.,
frozen CLIP [11] and trainable BERT [5].

Results & Analyses We present experiments for zero-shot
3D visual grounding on SceneVerse-val [8] in Tab. A.4.
MPEC with the frozen CLIP text encoder achieves a better
overall grounding accuracy of 17% compared with existing
available open-vocabulary 3D understanding models like
OpenScene [10] and RegionPLC [16]. However, compared
with task-specific models for 3D visual grounding, i.e., 3D-
VisTA [17] and GPS [8], MPEC with the frozen (*+) CLIP

Table A.4. Zero-Shot 3D Visual Grounding on SceneVerse-
val [8]. We report accuracy (%) on SceneVerse-val [8] and evaluate
models using GT object proposals. & and ¥ indicates trainable
and frozen text encoder, respectively.

Method ‘ Text Encoder ‘ Overall Easy Hard
3D-VisTA [17] BERT® 52.9 59.6 354
GPS [3] BERT® 592 694 440
OpenScene [10] CLIP 13.3 15,5 10.1
RegionPLC [16] CLIP 10.6 11.8 89
MPEC CLIP 17.0 23.8 6.7
MPEC BERT® 426 562 222

text encoder is considerably lower by more than 35% (17%
vs. 52+%). After replacing the frozen CLIP text encoder with
a trainable (@) BERT, the overall accuracy significantly im-
proves from 17% to 42.6%. This underscores the limitation
of the frozen LCIP text encoder, which struggles to handle
long and detailed descriptions, particularly when grounding
specific 3D objects in complex 3D scenes.

D. Additional Experiment Results for Data-
efficiency Fine-tuning

In this section, we provide additional fine-tuning experiment
results on the ScanNet Data-Efficiency benchmark [7].

Experiment Settings We compare our method with previ-
ous methods on ScanNet-LR (Limited Scene Reconstruc-
tion) and ScanNet-LA (Limited Annotation) test splits.
For ScanNet-LR, we use the {1%, 5%, 10%, 20%} sampled
scenes provided in ScanNet-LR and use the annotations
within each scene to fine-tune our pre-trained representation
Fp for semantic segmentation. Similarly, For ScanNet-LA,
we follow [7] and provide {20, 50, 100, 200} labeled points
per scene for fine-tuning our learned representation. Notably,
we train MPEC by removing ScanNet data under this set-
ting and report the mloU for semantic segmentation on both
splits as the evaluation metric.

Results & Analyses As shown in Tab. A.5 and Tab. A.6,
our method consistently outperforms previous methods by a
large margin, particularly in scenarios with extremely limited



Table A.5. ScanNet Limited Scene Resconstruction. We report the Table A.6. ScanNet Limited Annotation. We report the mloU (%)
mloU (%) results on ScanNet [4] data efficient semantic segmentation results on ScanNet [4] data efficient semantic segmentation bench-

benchmark with limited scene reconstruction setting. mark with limited point annotation setting.
LR ‘ Semantic Segmentation (mloU) LA ‘ Semantic Segmentation (mloU)
Pct. ‘ SC CSC[7] MSC|[14] GCT[13] Ours Pts. ‘ SC CSC[7] MSC[14] GCI[13] Ours
1% | 26.1 289 29.2 30.7 40.8 20 | 419 55.5 61.2 61.2 62.9
5% | 47.8 49.8 50.7 52.9 58.5 50 | 53.9 60.5 66.8 67.3 69.2
10% | 56.7 59.4 61.0 62.0 64.0 100 | 62.2 65.9 69.7 70.3 72.0
20% | 62.9 64.6 64.9 66.5 66.3 200 | 65.5 68.2 70.7 71.8 73.1

reconstructions (~10% improvement for 1% trained scenes).
This highlights the ability of MPEC to retain language-
aligned 3D feature extraction on unseen scenes and the fast
adaptability of the learned representations to downstream
tasks under data-scarce scenarios.

E. More Quantitative Results

We provide more qualitative results in Fig. A.1 and Fig. A.2.
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Figure A.1. More Qualitative Results on ScanNet [4].
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Figure A.2. More Qualitative Results on ScanNet [4].



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d
spatio-temporal convnets: Minkowski convolutional neural
networks. In CVPR, pages 3075-3084, 2019. 1

Pointcept Contributors. Pointcept: A codebase for point
cloud perception research. https://github.com/
Pointcept/Pointcept, 2023. 1

Spconv Contributors. Spconv: Spatially sparse convolu-
tion library. https://github.com/traveller59/
spconv, 2022. 1

Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber,
Thomas Funkhouser, and Matthias NieBner. Scannet: Richly-
annotated 3d reconstructions of indoor scenes. In CVPR,
pages 5828-5839, 2017. 1,2,3,4,5

Jacob Devlin. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 2

Benjamin Graham, Martin Engelcke, and Laurens Van
Der Maaten. 3d semantic segmentation with submanifold
sparse convolutional networks. In CVPR, pages 9224-9232,
2018. 1

Ji Hou, Benjamin Graham, Matthias Nieiner, and Saining
Xie. Exploring data-efficient 3d scene understanding with
contrastive scene contexts. In CVPR, pages 15587-15597,
2021.1,2,3

Baoxiong Jia, Yixin Chen, Huangyue Yu, Yan Wang, Xuesong
Niu, Tengyu Liu, Qing Li, and Siyuan Huang. Sceneverse:
Scaling 3d vision-language learning for grounded scene un-
derstanding. arXiv preprint arXiv:2401.09340, 2024. 2

Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-
Wing Fu, and Jiaya Jia. Pointgroup: Dual-set point grouping
for 3d instance segmentation. In CVPR, pages 48674876,
2020. 1

Songyou Peng, Kyle Genova, Chiyu Jiang, Andrea Tagliasac-
chi, Marc Pollefeys, Thomas Funkhouser, et al. Openscene:
3d scene understanding with open vocabularies. In CVPR,
pages 815-824, 2023. 2

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervision.
In ICML, pages 8748-8763. PMLR, 2021. 1, 2

David Rozenberszki, Or Litany, and Angela Dai. Language-
grounded indoor 3d semantic segmentation in the wild. In
ECCV, pages 125-141. Springer, 2022. 1

Chengyao Wang, Li Jiang, Xiaoyang Wu, Zhuotao Tian, Bo-
hao Peng, Hengshuang Zhao, and Jiaya Jia. Groupcontrast:
Semantic-aware self-supervised representation learning for
3d understanding. In CVPR, pages 4917-4928, 2024. 1, 3
Xiaoyang Wu, Xin Wen, Xihui Liu, and Hengshuang Zhao.
Masked scene contrast: A scalable framework for unsuper-
vised 3d representation learning. In CVPR, pages 9415-9424,
2023. 1,3

Saining Xie, Jiatao Gu, Demi Guo, Charles R Qi, Leonidas
Guibas, and Or Litany. Pointcontrast: Unsupervised pre-
training for 3d point cloud understanding. In ECCV, pages
574-591. Springer, 2020. 1

(16]

(17]

(18]

Jihan Yang, Runyu Ding, Weipeng Deng, Zhe Wang, and
Xiaojuan Qi. Regionplc: Regional point-language contrastive
learning for open-world 3d scene understanding. In CVPR,
2024. 2

Ziyu Zhu, Xiaojian Ma, Yixin Chen, Zhidong Deng, Siyuan
Huang, and Qing Li. 3d-vista: Pre-trained transformer for 3d
vision and text alignment. In /CCV, pages 2911-2921, 2023.
2

Ziyu Zhu, Zhuofan Zhang, Xiaojian Ma, Xuesong Niu, Yixin
Chen, Baoxiong Jia, Zhidong Deng, Siyuan Huang, and Qing
Li. Unifying 3d vision-language understanding via prompt-
able queries. arXiv preprint arXiv:2405.11442, 2024. 1


https://github.com/Pointcept/Pointcept
https://github.com/Pointcept/Pointcept
https://github.com/traveller59/spconv
https://github.com/traveller59/spconv

	. Implementation Details
	. Additional Per-category Performance Analyses on ScanNet
	. Additional Experiment Results for Zero-shot 3D Visual Grounding
	. Additional Experiment Results for Data-efficiency Fine-tuning
	. More Quantitative Results

