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Additional video results, including comparisons for
novel view synthesis, novel expression synthesis, and cross-
identity reenactment, are available on � our project page.

In this document, we state our implementation details
(Sec. A), baseline configurations (Sec. B), additional ab-
lation studies on loss functions (Sec. C), and limitations
(Sec. D). Detailed quantitative results for each subject are
provided in Tab. 5 and Tab. 6. Comparisons of the aver-
age inference time, tested on an NVIDIA V100 GPU, are
summarized in Table 3.

A. Network Structures & Implementation

Within our proposed framework, we train a Hybrid Mesh-
Gaussian Head Avatar (MeGA) using multi-view videos as
the supervision. Specifically, given a driving signal (i.e.,
FLAME parameters provided by GaussianAvatars [7]) and
a view vector d ∈ R3, three decoders are employed to pre-
dict the view texture map T̂ v ∈ R1024×1024×3, the dynamic
texture map T̂ dy ∈ R1024×1024×3, and the UV displace-
ment map Ĝd ∈ R256×256×3.

The view decoder Mv consists of 7 convolution lay-
ers and generates the view texture map T̂v from the tiled
view vector (i.e., expanding the view vector d from R3 to
R8×8×3). Both the dynamic decoder Mdy and the dis-
placement decoder Mdisp include one linear layer to map
the FLAME expression ψ and pose ϕ parameters to a la-
tent code z ∈ R256, followed by 7/5 convolution layers,
respectively, to generate the dynamic texture map T̂dy and
the UV displacement map Ĝd. As discussed in Sec. 3.1,
Ĝd is used to account for geometric details that cannot be
represented within the FLAME space, and the three texture
maps (i.e., T̂v , T̂dy , and T̂di which is a learnable latent map)
are added up to generate the neural texture map. The neu-
ral textures are further decoded by our per-pixel decoder for

Learned 
PE

𝒖𝒗 ∈ 𝑹𝟏×𝟐

𝒛 ∈ 𝑹𝟏×𝟒

FC sin

12 8 8 8 3

rgb

Facial Renderings

neural features

uv coordinates

𝒖𝒗𝒑𝒆 ∈ 𝑹𝟏×𝟖

FC sin FC sin FC
sig

m
oi

d

Figure 6. The Lightweight Per-Pixel Decoder. The learned posi-
tional encoding (Learned PE) is the same as PiCA [4].

the final RGB values. The structure of the per-pixel decoder
are shown in Fig. 6.

For hair modeling, we initialize 3D Gaussian Splatting
(3DGS) by sampling 50,000 on- and 100,000 off-surface
points according to the scalp region of the tracked FLAME
mesh. Using the densification and pruning strategies pro-
posed by Kerbl et al. [1], we optimize the 3DGS from multi-
view images of a selected training frame to produce a high-
quality static canonical hair model (∼60,000 Gaussians).
Our deformation field is represented by a two-layer MLP,
with each layer comprising 256 neurons.

Loss weights in Sec. 4 are set to {λpho = 1.0, λssim =
0.2, λd = 1.0, λn = 1.0, λshr = 1.0, λlap = 50, λnc =
0.1, λel = 100, λsilh = 0.2, λsol = 0.1, λaiap = 1000}.

B. Baseline Configurations
All baselines are trained from scratch using the same
train/test split as GaussianAvatars [7]. As outlined in Sec.
6, the quantitative metrics (i.e., PSNR, SSIM, and LPIPS)
are calculated under the same masks for all baselines.

GaussianAvatars (GA). We use their public codes and
identical settings to generate results for comparisons. All
subject models are trained for 600,000 iterations to ensure
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Figure 7. Poor Generalization Performance of the Gaussian
Head Avatar (GHA). For unseen expressions/poses, the GHA
cannot produce reasonable deformed Gaussians, resulting in the
corrupted renderings.

convergence.

Gaussian Head Avatar (GHA). The original GHA pa-
per [9] utilizes different subjects and expression sequences
from the NeRSemble dataset [2] for training and evaluation.
To enable comparisons, we download the raw NeRSemble
video data and, following the instructions in their GitHub
repository, process the same expression sequences as ours
(i.e., EMO-1 to EMO-4, EXP-2 to EXP-5, and EXP-8 to
EXP-9) for GHA’s training/evaluating. All subject models
are trained for 200 epochs to achieve convergence.

Note that the amount of training data in our experiments
is significantly smaller than that used in the original GHA
paper, which amplifies GHA’s limitations in rendering novel
expressions. Specifically, the deformation MLPs in GHA
require a large amount of training data to achieve good gen-
eralization performance; otherwise, the GHA will produce
rather bad renderings for unseen expressions. As shown in
Fig. 7, when driven by unseen expression/pose parameters
(row 1), the deformed head Gaussians result in corrupted
splatting results (row 1, col 2) and poor final renderings,
even after applying the super-resolution module (row 1, col
3). The renderings driven by seen expressions are shown in
Fig. 7, row 2.

PointAvatar (PA). We use their publicly available codes for
training, except for modifying their dataloader to support
multi-view video data. Due to the limited memory of the
NVIDIA V100 GPUs (32GB), we set the maximum number
of points to 240,000. All subject models are trained for 63
epochs to achieve convergence.

DELTA. We make several modifications to the DELTA pub-
lic codes to enable comparisons. First, we rewrite the dat-

Table 3. Comparisons on the averaged inference time.
Methods DELTA PointAvatar Gaussian Head Avatar GaussianAvatars MeGA (Ours)

Inference Time 214ms 293ms 59ms 10ms 37ms

Table 4. Additional Ablation Studies on Subject 306. We
demonstrate the effectiveness of our introduced novel loss func-
tions. (d) and (e) demonstrates that any loss functions introduced
for the head and hair part presents positive effects on performance.

Label Name Losses PSNR ↑ SSIM ↑ LPIPS ↓ Geo. MAE ↓

MeGA (Ours) 33.57 0.963 0.040 2.25mm

(d.1) MeGA-nodipho w/o LF
di·pho 33.10 0.961 0.046 3.24mm

(d.2) MeGA-noshrink w/o Lshr 33.11 0.959 0.047 2.17mm
(d.3) MeGA-noheadreg w/o LF

reg 32.51 0.959 0.051 15.74mm

(e.1) MeGA-nosolid w/o LH
sol 33.04 0.959 0.046 2.25mm

(e.2) MeGA-noaiap w/o Laiap 33.06 0.961 0.048 2.25mm

aloader to support multi-view video inputs. Next, since
DELTA uses the SMPL-X [6] model instead of the FLAME
model for their facial and body mesh, for fair comparisons,
we write a Python script using PyTorch [5] to estimate
SMPL-X parameters from our FLAME meshes by mini-
mizing the point-to-point distances. The Python script will
also be released later. All subject models are trained for 50
epochs to achieve convergence.

Note that we don’t provide comparisons on alternating
hairstyles with DELTA. The reason is that despite modi-
fying their codes as described above, we were still unable
to successfully generate hair transfer results. Additionally,
since DELTA uses their own optimized camera parameters,
which are estimated during the SMPL-X fitting procedure,
we cannot freely control the viewpoint to facilitate dynamic
video comparisons.

C. Ablation Studies on Loss Functions
Tab. 4 presents the quantitative results after removing cer-
tain loss functions. The removal of any loss function de-
grades the performance.

Specifically, (d.1) removes the diffuse loss LF
di·pho dur-

ing facial mesh optimization and joint optimization, re-
sulting in worse mesh geometry (3.24mm vs. 2.25mm
Geo. MAE) and final renderings (33.10 vs. 33.57 PSNR).
More importantly, removing LF

di·pho entangles the view-
and expression-dependent effects into the diffuse texture
map T̂di, negatively impacting the subsequent texture edit-
ing functionality. (d.2) removes the shrink loss Lshr dur-
ing facial mesh optimization. Without constraints applied to
the scalp of the FLAME mesh, “MeGA-noshrink” achieves
slightly better facial geometry (2.17mm vs. 2.25mm Geo.
MAE). However, the scalp of the estimated FLAME mesh
may become overly large and potentially cover the hair re-
gions, leading to incorrect occlusion relationships and poor
renderings (33.11 vs. 33.57 PSNR). (d.3) removes the head
regularization term LF

reg during facial mesh optimization,
significantly harming the learned facial geometry (15.74mm
vs. 2.25mm Geo. MAE) and resulting in worse render-



ings (32.51 vs. 33.57 PSNR). (e.1) removes LH
sol during the

optimization of the canonical Gaussian hair and joint op-
timization, leading to transparent Gaussian hair, impairing
the disentanglement of the Gaussian hair and mesh head,
and degrading final rendering performance (33.06 vs. 33.57
PSNR). (e.2) removes the as-isometric-as-possible regular-
ization [8] during joint optimization. Without this rigid
constraint, our MeGA tends to produce Gaussian floaters
around the hair, particularly when rendering consecutive
video frames.

D. Limitations & Discussions
While our approach effectively captures detailed skin tex-
tures (e.g., wrinkles), generates high-fidelity head render-
ings, and supports various editing functionalities, there are
several limitations that require further exploration and im-
provement. (1) Due to the use of learning-based modules
for facial appearance and geometry modeling, our approach
typically depends on larger training datasets to achieve su-
perior performance for novel expressions that significantly
differ from those in the training set. Insufficient training
data may lead to poor generalization performance. (2) Our
network structures and supervision methods are specifically
designed for multi-view videos with relatively dense view-
points (e.g., larger than 16 views). For instance, the view
decoder Mv requires dense view inputs to ensure opti-
mal generalization performance, and our ground truth depth
maps are derived from multi-view images using Multi-View
Stereo (MVS), which also relies on dense views for suffi-
ciently accurate results. We believe that addressing these
limitations could potentially reduce the reliance on multi-
view video setups, paving the way for monocular video se-
tups and expanding the range of potential applications. (3)
The current Gaussian hair in MeGA is rigid and cannot be
used for further editing or physical simulation. We spec-
ulate that replacing the current Gaussian hair with some
strand-based hair representations [3, 10] could produce bet-
ter renderings and enable more versatile hair editing capa-
bilities.



Table 5. Comparisons with State-of-the-Art Methods on novel view synthesis. MeGA achieves better LPIPS, SSIM, and PSNR (1dB
higher than the 2nd best method on average). We bold (underline) the best (2nd best) results.

Subject MeGA (Ours) GaussianAvatars Gaussian Head Avatar PointAvatars DELTA
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

074 32 0.931 0.097 31.88 0.936 0.097 27.81 0.904 0.124 25.67 0.905 0.172 23.56 0.842 0.173
104 29.27 0.923 0.088 29.20 0.934 0.088 27.52 0.883 0.094 23.62 0.891 0.116 21.69 0.836 0.142
218 32.79 0.971 0.052 31.79 0.964 0.046 26.54 0.881 0.082 27.99 0.932 0.073 24.94 0.901 0.144
253 36.80 0.971 0.035 35.68 0.966 0.037 30.82 0.908 0.065 27.48 0.929 0.073 25.71 0.881 0.117
264 35.48 0.971 0.037 34.29 0.974 0.042 30.64 0.900 0.086 27.64 0.940 0.077 25.01 0.873 0.126
302 36.58 0.963 0.040 35.52 0.954 0.055 31.42 0.913 0.071 28.57 0.925 0.078 24.97 0.869 0.152
304 30.19 0.901 0.065 30.70 0.906 0.065 29.30 0.822 0.099 24.99 0.862 0.114 22.45 0.837 0.186
306 36.28 0.975 0.035 35.51 0.953 0.039 29.69 0.906 0.080 28.36 0.931 0.065 26.47 0.890 0.108
460 37.64 0.979 0.023 37.27 0.974 0.027 31.59 0.927 0.052 29.42 0.949 0.049 26.81 0.908 0.097

avg. 34.11 0.954 0.052 33.54 0.951 0.055 29.48 0.894 0.084 27.08 0.918 0.091 24.62 0.871 0.138

Table 6. Comparisons with State-of-the-Art Methods on novel expression synthesis. MeGA achieves better LPIPS, SSIM, and PSNR
(1dB higher than the 2nd best method on average). We bold (underline) the best (2nd best) results.

Subject MeGA (Ours) GaussianAvatars Gaussian Head Avatar PointAvatars DELTA
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

074 29.32 0.917 0.096 28.90 0.919 0.094 21.24 0.826 0.158 24.24 0.883 0.132 21.37 0.836 0.173
104 27.80 0.921 0.098 27.60 0.937 0.094 20.31 0.816 0.167 22.57 0.899 0.111 20.81 0.824 0.168
218 32.76 0.968 0.042 30.89 0.962 0.045 23.88 0.869 0.131 28.25 0.935 0.073 24.37 0.903 0.148
253 36.06 0.968 0.038 33.12 0.964 0.041 25.31 0.871 0.124 26.33 0.925 0.081 23.25 0.874 0.133
264 34.05 0.966 0.044 33.36 0.971 0.046 21.34 0.880 0.123 27.12 0.939 0.076 23.71 0.847 0.154
302 33.50 0.954 0.050 32.28 0.945 0.062 22.64 0.861 0.134 25.88 0.916 0.156 22.38 0.851 0.179
304 29.71 0.917 0.076 29.43 0.903 0.081 20.91 0.797 0.166 23.98 0.874 0.121 19.48 0.824 0.201
306 33.57 0.963 0.040 32.57 0.948 0.044 21.20 0.859 0.180 25.54 0.922 0.079 23.49 0.884 0.146
460 36.56 0.975 0.027 34.94 0.974 0.031 25.79 0.899 0.114 28.24 0.952 0.099 24.56 0.879 0.121

avg. 32.59 0.949 0.057 31.45 0.947 0.060 22.51 0.853 0.144 25.79 0.916 0.103 22.60 0.858 0.158
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