
Supplementary material:

MetaShadow: Object-Centered Shadow Detection, Removal, and Synthesis



There are ten parts in this supplementary material.

Part 1 presents details on our MOS dataset.

Part 2 presents additional details about our Shadow Analyzer.

Part 3 presents additional details and ablation study about our Shadow Synthesizer.

Part 4 presents details on our shadow-specific data augmentations.

Part 5 presents the pipeline of object relocation.

Part 6 presents general shadow removal ability of MetaShadow.

Part 7 presents additional comparisons on object-centered shadow detection and removal, as well as additional results from
our Shadow Analyzer.

Part 8 presents additional comparisons on object-centered shadow synthesis.

Part 9 presents additional video results on object-centered video shadow synthesis.

Part 10 discusses a possible solution to address the limitation of our Shadow Synthesizer.



Part 1: Details on Moving Objects in the Shadow (MOS) Dataset
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Figure 1. An example of our MOS dataset, the object mask is additional output from the render.

We compiled 1,200 free 3D assets from Sketchfab and Polyhaven with an additional 500 scanned human models to
support the common application scenarios [1]. We use 200 sunny outdoor HDRIs from Polyhaven for environment maps and
backgrounds. We set up a camera ring within the virtual environment and randomly place two to five objects, while ensuring
no occlusion between them. We render five scenes for each set of objects, randomly picking an object from that set and
placing it at a new location. We produced 8,000 images with automatically-generated object mask annotations and images
with/without each object in the scene to construct the ground truths for training. We show an example in Fig 1.

By combining the MOS dataset during object-centered shadow-removal training, we observe improvements in visual
quality and a reduction in grid artifacts, as shown in Fig. 2.

w/o MOS w/o MOS w/o MOSw/ MOS w/ MOS w/ MOS

Figure 2. The MOS dataset improves our Shadow Analyzer by enhancing visual quality and reducing grid artifacts.



Part 2: Additional Details on Shadow Analyzer

Table 1. Architecture of the Proposed Shadow Detector

Stage Operation Kernel size Output Size

Input - - 64× 64× (384 ∗ 4)
Conv1 Conv2d-BN-GELU 1× 1 64× 64× 128
Conv2 Conv2d-BN-GELU 3× 3 64× 64× 128
Up1 ConvTranspose2d-BN-GELU 4× 4 128× 128× 128

Conv3 Conv2d-BN-GELU 3× 3 128× 128× 128
Conv4 Conv2d-BN-GELU 3× 3 128× 128× 32
Up2 ConvTranspose2d-BN-GELU 4× 4 256× 256× 32

Conv5 Conv2d-BN-GELU 3× 3 256× 256× 32
Final Conv2d-Sigmoid 1× 1 256× 256× 1

Architecture of Shadow Detector. Tab. 1 shows the architecture of our proposed shadow detector, starting with a 1×1
convolution to compress input features F i

s (1536 to 128) from GAN, followed by layers of 3×3 2D convolutions, batch
normalization, and GELU activations for feature refinement. Upscaling is achieved through transposed convolutional layers.
The architecture concludes with a 2D convolution with sigmoid function, resulting in a shadow mask Ms.

Architecture of Discriminator. Tab. 2 shows the architecture of our proposed discriminator based on the discriminator of
StyleGAN2 [? ]. The difference is that we add the ground truth shadow mask along with the RGB image into the discrim-
inator to provide contextual awareness, enabling more precise evaluations of shadow removal effectiveness and guiding the
generator towards more targeted improvements in shadow regions.



Table 2. Architecture of Discriminator.

Layer Operation Kernel Size Output Size

Input - - 512× 512× 4
FromRGB Conv2d-Leaky ReLU 1× 1 512× 512× 64
Conv1 Conv2d-Leaky ReLU 3× 3 512× 512× 64
Conv2 Conv2d-Leaky ReLU 3× 3 256× 256× 128
Skip1 Conv2d-Leaky ReLU 1× 1 256× 256× 128
Conv3 Conv2d-Leaky ReLU 3× 3 256× 256× 128
Conv4 Conv2d-Leaky ReLU 3× 3 128× 128× 256
Skip2 Conv2d-Leaky ReLU 1× 1 128× 128× 256
Conv5 Conv2d-Leaky ReLU 3× 3 128× 128× 256
Conv6 Conv2d-Leaky ReLU 3× 3 64× 64× 512
Skip3 Conv2d-Leaky ReLU 1× 1 64× 64× 512
Conv7 Conv2d-Leaky ReLU 3× 3 64× 64× 512
Conv8 Conv2d-Leaky ReLU 3× 3 32× 32× 512
Skip4 Conv2d-Leaky ReLU 1× 1 32× 32× 512
Conv9 Conv2d-Leaky ReLU 3× 3 32× 32× 512
Conv10 Conv2d-Leaky ReLU 3× 3 16× 16× 512
Skip5 Conv2d-Leaky ReLU 1× 1 16× 16× 512
Conv11 Conv2d-Leaky ReLU 3× 3 16× 16× 512
Conv12 Conv2d-Leaky ReLU 3× 3 8× 8× 512
Skip6 Conv2d-Leaky ReLU 1× 1 8× 8× 512
Conv13 Conv2d-Leaky ReLU 3× 3 8× 8× 512
Conv14 Conv2d-Leaky ReLU 3× 3 4× 4× 512
Skip7 Conv2d-Leaky ReLU 1× 1 4× 4× 512
MinibatchStd MinibatchStd - 4× 4× 512
Conv15 Conv2d-Leaky ReLU 3× 3 4× 4× 512
FC Fully Connected - 512
Output Fully Connected - 1



Part 3: Additional Details on Shadow Synthesizer

Our Shadow Synthesizer in MetaShadow takes an RGB image, an object mask, and an optional shadow mask as input.
The shadow mask is initially empty because when an object is moved to a new location, its shadow may take on a different
shape due to perspective and changes in geometry compared to its original position. Additionally, in scenarios where objects
are inserted, the shape of the shadow may not be known. Sometimes, the plane is flat and the detected shadow mask from
the original location is suitable for guiding the Shadow Synthesizer to synthesize shadows. Therefore, we combined these
two situations for training by using a mask type m = 0 or 1, similar to [12], to indicate the condition for the model. Tab. 3
shows the performance gain when we take the ground-truth shadow mask as guidance. Also, we include full ablation study
in this table where we did not update in the main paper. For Table 4 in the main paper, we upsampled our results to 256×256
using the Lanczos interpolation method to ensure a fair comparison. For Tab. 3, we used the original 128× 128 resolution to
compute all the metrics.

Method
Global
RMSE ↓

Bbox
PSNR↑

Bbox
SSIM↑

Baseline 1: SSDM-Text [3, 10] 3.36 29.80 92.21
Baseline 2: SSDM-CLIP [3, 9] 4.51 29.72 93.17
Ours without shadow mask 2.93 30.73 93.49
Ours with shadow mask 2.87 31.17 94.05

Table 3. Ablation study on without or with shadow mask for Shadow Synthesizer.

More results on controllable shadow synthesis with ground-truth shadow mask are shown in 3. The shape of the synthe-
sized shadow can follow the given ground-truth shadow mask. This indicates that Shadow Synthesizer can obtain shadow
color and intensity information from the shadow knowledge of Shadow Analyzer and the accurate shadow shape information
from the input shadow mask.

Input image

Object mask Shadow Synthesis Results

Reference images

Figure 3. By editing the reference images with color or intensity, the synthesized shadow will follow the modification.



Part 4: Shadow-specific Data Augmentations
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Figure 4. Shadow-specific data augmentations. In (c), the gray object mask indicates that the shadows of these objects have been removed
in the augmented image and they are not included in the final object mask.

We perform three shadow-specific data augmentations to improve the model’s generalizability and controllability: (i)
Random shadow intensity augmentation, (ii) Curve-based shadow color grading, and (iii) Random shadow dropping.

(i) Random shadow intensity augmentation: We control the shadow intensity in images to enhance dataset diversity and
model robustness, by computing the difference D between the shadow image and the shadow-free image and multiplying a
shadow mask with a random scale factor S, where S ∈ [0.7, 1.3]

D = (Is − Isf ) ·Ms,

Ĩs = Isf −D× S,
(1)

(ii) Curve-based shadow color grading: This helps simulate varying lighting conditions and address photos with color
adjustments. Inspired by color grading tools, we apply a 3D curve to randomly adjust the color of shadow regions. Specifi-
cally, as shown in Fig. 4 (b), we set five control points (ranging from 0 to 255) uniformly in each of the three color channels.
We randomly add a small value (-10,10) to the second control point (64) and retain the others at original positions to keep
the higher intensity values consistent.

This data augmentation also helps our MetaShadow in removing colored shadows, as shown in Fig. 5 (a-c). In other
words, it enables the shadow analyzer to extract more accurate shadow information and contribute to the shadow synthesis
tasks. Note that the controllable shadow synthesis ability of our MetaShadow, as shown in Fig. 7 in the main paper and
Fig. 3, benefits from these two data augmentations, i.e., (i) and (ii).



(e) w/o (iii)(d) Input image

(a) Input image (b) w/o shadow color grading (c) w/ shadow color grading

(f) w/ (iii)

Figure 5. Ablation study on (ii) curve-based shadow color grading and (iii) random shadow dropping. We can observe that (a) has a green-
blur tone inside the shadow region. The previous model (b) fails to eliminate this tone in the shadow-removed area. However, by employing
this data augmentation, we can achieve better color consistency between the shadow-removed and non-shadow regions (c). From another
set of images, we can observe that, without random shadow dropping, the Shadow Synthesizer will synthesize shadow for objects that do
not have shadows and ignore the object mask. With random shadow dropping, the Shadow Synthesizer now only synthesizes shadow for
the object given in the object mask.

(iii) Random shadow dropping: In training the Shadow Synthesizer, we found that it may ignore the object mask and
synthesize shadows for objects without shadows. This is caused by the fact that the input images are always without shadows,
while the ground truths always have shadows. To address this, we randomly drop the shadows of some objects and exclude
these objects in the object mask to encourage the model to be aware of the information in the object mask. Fig. 5 (d-f)
illustrates the effectiveness of this data augmentation.



Part 5: The Pipeline of Object Relocation
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Figure 6. The pipeline of object relocation.

Fig. 6 presents the pipeline of our object relocation application. We initially feed the input image with the user’s click
prompt to the Segment Anything Model (SAM) [6] to generate an object segmentation mask. Then, our MetaShadow frame-
work takes the input image and object mask to perform object-centered shadow removal. Next, we remove the object by
using CMGAN [14], an image inpainting model, to get the background image. Based on the segmentation mask of the ob-
ject, we can let the user relocate the object in the background image and also produce the relocated object mask. Finally,
the MetaShadow takes the relocated image and relocated object mask to synthesize shadows for the object inside the object
mask.

We use this pipeline to generate the result of Fig. 1 in the main paper and also use the right part of this pipeline to produce
our Moving DESOBA dataset.



Part 6: General Shadow Removal Ability of MetaShadow

As shown in Fig. 20, our Shadow Analyzer can detect and remove general cast shadows when the object mask is empty,
with each pixel of the mask being zero. This ability is contributed by our unique training scheme as introduced in the main
paper. By utilizing this capability, our MetaShadow can synthesize shadows by using the cast shadow in the image, as shown
in Fig. 7.

Input image

Input image

Object mask

Object mask

Ref. image

Ref. image

Ref. obj. mask

Ref. obj. mask

Our result

Our result

Figure 7. Synthesizing shadow by using the information of cast shadows.



Part 7: Additional Comparison on Object-Centered Shadow Removal

We present comparisons on the DESOBA Dataset [4]. Some of our results even surpass the reference ground truth,
whose shadows were removed by experts using Photoshop [4]. ShadowDiffusion [2], even when fine-tuned with our settings
(datasets and data augmentations), fails to eliminate the shadows. Fig. 14 shows our Shadow Analyzer’s capability to remove
soft shadows.

Input with target object Reference Ground Truth

GT mask with ShadowDiffusion

GT mask with ShadowDiffusion

SSISv2 with ShadowDiffusion

Our Shadow Analyzer

Figure 8. Additional comparison #1 on object-centered shadow removal.



Input with target object Reference Ground Truth

GT mask with ShadowDiffusion

GT mask with ShadowDiffusion

SSISv2 with ShadowDiffusion
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Figure 9. Additional comparison #2 on object-centered shadow removal.



Input with target object Reference Ground Truth
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Figure 10. Additional comparison #3 on object-centered shadow removal.



Input with target object Reference Ground Truth
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Figure 11. Additional comparison #4 on object-centered shadow removal.



Input with target object Reference Ground Truth

GT mask with ShadowDiffusion

GT mask with ShadowDiffusion

SSISv2 with ShadowDiffusion

Our Shadow Analyzer

Figure 12. Additional comparison #5 on object-centered shadow removal.



Input with target object Reference Ground Truth

GT mask with ShadowDiffusion

GT mask with ShadowDiffusion

SSISv2 with ShadowDiffusion

Our Shadow Analyzer

Figure 13. Additional comparison #6 on object-centered shadow removal.



Input with target object Reference Ground Truth

GT mask with ShadowDiffusion
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SSISv2 with ShadowDiffusion

Our Shadow Analyzer

Figure 14. Additional comparison #7 on object-centered shadow removal.



Part 7: Additional Results from Shadow Analyzer
Here we show additional object-centered shadow detection and removal results on real-world images from the Web. The

scenarios include soft shadows (Fig. 15(1), Fig. 16(3), Fig. 17(1), Fig. 19(3)), complex textures (Fig. 15(2), Fig. 16(1),
Fig. 17(3), Fig. 18(1)), complex geometry and overlap (Fig. 15(2), Fig. 17(2), Fig. 18(3)), and colored shadows (Fig. 18(2),
Fig. 19(1,2)). The number in () indicates the column number.
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Figure 15. Additional result #8 on object-centered shadow detection and removal from our Shadow Analyzer.
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Figure 16. Additional result #9 on object-centered shadow detection and removal from our Shadow Analyzer.
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Figure 17. Additional result #10 on object-centered shadow detection and removal from our Shadow Analyzer.
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Figure 18. Additional result #11 on object-centered shadow detection and removal from our Shadow Analyzer.
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Figure 19. Additional result #12 on object-centered shadow detection and removal from our Shadow Analyzer.
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Figure 20. Additional result #13 on object-centered shadow removal from our Shadow Analyzer. In the last row, we also provide the results
of general shadow removal when the input object mask is empty.



Part 8: Additional Results on Object-Centered Shadow Synthesis

SGRNet SGDiffusion
Ours with 


Lanczos upsample
Ours with 


SD upscalerInput image Ground Truth

Figure 21. Additional result #1 on object-centered shadow synthesizing from our MetaShadow.



 Composition image Reference image SGRNet Libcom Ours with SD upscaler

Figure 22. Additional result #2 on object-centered shadow synthesizing from our MetaShadow.



 Composition image Reference image SGRNet Libcom Ours with SD upscaler

Figure 23. Additional result #3 on object-centered shadow synthesizing from our MetaShadow.



Part 9: Additional Video Results On Object-Centered Video Shadow Synthesis

SGRNet [4] SGDiffusion [7] libcom [8] Ours

Table 4. Additional video results tested on the Video DESOBA dataset. We take the first frame as the reference and synthesize the shadow
for the remaining frames. Please use Adobe Acrobat to see the GIFs or check the GIF folder provided as part of the supplementary material.



Part 10: Limitation, Possible Solution, And Future Works

Since MetaShadow is the first attempt to join these different shadow tasks, our framework has several limitations. The
resolution of the current Shadow Synthesizer is limited to 128 × 128. A possible solution is to upsample the shadow region
and then replace the region in the high-resolution input image with an upsampled shadow region. However, even for the
Lanczos algorithm, the resulting shadow may become blurry, as shown in Fig. 24 (b). Another way is to use a deep upscaler,
like the Stable Diffusion upscaler [11]. Upsampling the entire image directly may lead to numerous artifacts compared to
the original image. Therefore, we utilize our predicted shadow mask solely for upsampling the shadow regions, as shown in
Fig. 24 (a). This is the default solution that we employed to upsample our results to 256× 256 for a visual comparison with
SGRNet [4], which has an output resolution of 256×256. There are other options like leveraging advanced techniques such as
latent diffusion models [11] or exploring the efficacy of GAN-based upscaling methods like GigaGAN [5] or diffusion-based
upscaling methods like SUPIR [13]. This is left as future work.

Another notable limitation is accurately handling scenarios with multiple light sources. This issue primarily stems from
the limited diversity in our current dataset. To improve this, our future work will not only incorporate sophisticated rendering
techniques for indoor scenes but also extend our dataset by including real-world videos.

SD upscaler

Our result Upscaled result

(a) Final result

Original image

Predicted shadow mask
(c) SGRNet(b) Ours with 


Lanczos upsample
(d) Ground Truth

Figure 24. A possible solution to address the limitation of our Shadow Synthesizer.
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