MoGe: Unlocking Accurate Monocular Geometry Estimation for Open-Domain
Images with Optimal Training Supervision

Supplementary Material

A. Algorithm Details
A.l. Recovering Shift and Camera Focal

We assume a simple pinhole camera model with isotropic
focal length and centered principal point. The 2D image
plane is parameterized with the center as (0,0). The im-
age plane coordinate of pixel ¢ is denoted as (u;,v;), cor-
responding to its predicted 3D point p; = (x4, y;, 2;). The
focal length and shift is obtained by minimizing the projec-
tion error,
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which can be further reduced to have a single variable ¢/, by
substituting f with its close-form solution with respect to
t,
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We use a numerical solver for this least squares problem
with Levenberg-Marquardt algorithm [19] implemented by
SciPy [32] package. For efficiency, the point map is resized
to low resolution (64 x 64) for running this algorithm. In
our practice, it typically converges within 10 iterations in
around 3ms.
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A.2. ROE Alignment

We will first introduce an algorithm to a simpler subprob-
lem then derive the solution to either with or without the
constraint of ¢, = t, = 0 (1D-shift case or 3D-shift case,
respectively).

Subproblem (w/o truncation). Consider the optimiza-
tion objective with respect to scale s only, denoted as lj(s).
We omit the mask M for simplicity and denote IV as the
number of valid points:

mm lo(s) = mmz w;|sT; — x4, 3)
where w; > 0 and z; > 0 without loss of generality. The
objective, as a summation of convex functions, is also con-

vex obviously. The minimum occurs where its left-hand
Iy (s) derivative and right-hand derivative /5" (s) have op-

Algorithm 1 ROE alignment subproblem w/o truncation

input: arrays X[1..n], X[1..n], W[l..n]
output: optimal scale s* and objective value [* to Eq. 3

function SOLVESUBPROBLEM(X X, W)
sort arrays X, X, W by X[i]/X[i]
Q[1..n] < accumulated sum of W * X
D[0..n] + {~QInl} U {2- Qli] - QInl}iy
1" «—the firsti s.t. D[i — 1] <0 < DJg]

§* < X[i*]/ X [i*]

[* < objective function value at s*.

return s*, [*.
end function
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Iy (s) and [g" (s) differ at { £ }. First, we sort {£:};¥; and

compute the prefix summations of {w;#;}¥ ;. This allows
us to evaluate the derivatives in O(1) time for each point in
{£}X,. Finally, £- such that I (%) < 0 < I (%) is the
minimum point. The solution is outlined in Algorithm 1.

Subproblem (w/ truncation). We truncate each residual
term to suppress outliers. The truncated objective is
N
= msinz min (7, w;|s&; — x4|), 5)
i=1

minly(s)

where T is set to 1 in all our experiments. For each item
l1(s) = min(7,w;|s&; — x;|) in the equation, the one-
sided derivatives are
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Therefore, the one-sided derivatives of [y(s) are
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Lemma | shows that the minimum of the objective func-
tion in Eq. 5 is still achieved at one of the points in the set
{# }Z 1> despite the function is non-convex and may con-
tain local minima.

Solving the subproblem requires two steps, as outlined
in Algorithm 2. The first step is to identify all extrema
in {i v, that satisfy [ (% ) <0< l’+(zl) by eval-
uating the derivative Values This can be done efﬁcwntly
through first binary searching on the sorted arrays {I' FA

ww”i’zf N, and {2273V | and then indexing the prefix
summations of {w;& 7} in the associated orders. This step
has a complexity of O(N log V). The second step involves
computing the objective values at these extrema and deter-
mining the minimum, which takes O(Nn.) time, where n,
is the number of extrema. As n. approximates the number

of outliers, it is typically a small constant in practice.

Lemma 1. There exists at least one pair of (k*,s*) such

that s* Ty~ — = = 0 and s* minimizes Eq. 5.

Proof. The minimum of [; (s) must exist, because 1 (s) is
continuous, piece-wisely linear and bounded in [0, N7].

We first prove that there must exist s* such that [; (s*) =
min/;(s) and {7 (s) > 17 (s). Otherwise, for all s* such
that lo(s*) = min/;(s), there will be I/"(s) = 17 (s) = 0,
hence the value of /1(s) in the linear interval where the
minimum locates is constant. As a consequence, all neigh-
boring intervals will be constant until the boundary where
minly(s) = l;(—o0) = N7, which contradicts the obvious
fact that min Iy (s) < ly(z1/%1) < NT.

Given [5T(s*) > 17 (s*), there exists an index k* such
that s* = &y« /x+, because
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Algorithm 2 ROE alignment subproblem w/ truncation

input: arrays X[1..n], X[1..n], W[1..n], float 7
output: the optimal scale s*, objective value [* to Eq. 5

function SOLVESUBPROBLEM(X, X, W, 7)

All.n] « X/X
Bll.n] + (W X —7)/(W % X)
Clln]+ WX +71)/(W x X)

for each array A in {A, B,C} do

sort A and obtain sorted indices I4[1..n]

Q.[1..n] + accumulated sum of {W X [L4[i]]}7_;
end for
Initialize I as empty set
for: =1tondo > parallel computation

for each array A in {A, B,C} do

o + thelast j s.t. Afj] < X[i]/X[i]
Jh < the last j s.t. A[j] < X[i]/X[i]

end for

d” < 2-Qaljy] — QBljz] — Qelic]

d* 2. QA[J:U Qslig] - Qclicd

ifd~ <0< d" thenappend i to I
end for
Initialize {[1.. N] with co
for iin Ir do

s  X[i]/X]

[[¢] + objective function value at s
end for
i* < index of the minimum in {[i],7 € Ig
s* = X[i*]/ X[i*], 1* + 1[i*]
return s*, [*

end function

> parallel computation

Alignment with 1D shift. Recall the alignment objective
and let w; be 1/z;. We rewrite it as follows:
n

min [wi|s§;i—xi|+wi\sgji—yi|+wi\82i+tz—zi|],

St
i=1
(10)
or apply truncation to each absolute residual term
n
min Y [min(7, w;|sd; — x;|)+min(r, w;|sg; —yi|)
s,lz i—1 (1 1)

+ min(7, w;|s2; + t. — z])].

The proposed solution is outlined in Algorithm 3, with
proof as follows. The corresponding subproblem solver is
selected based on whether truncation is applied.

Lemma 2. There exists at least one triplet of (k*,s*, %)
such that s*Z» + t5 — zi= = 0 and (s*,t%) minimizes the
objective of Equation 11.



Proof. Denote the objective as l5(s, ),
l2 (57 tz) =
i=1

N
+ Zmin (rywi|t, — (2 — s2:)])]-
i=1

12)

Given arbitrary s, using Lemma 1, there exists at least one

pair (¢, k) such that t, — (2, — sZ) = 0 and ¢, minimizes
n . ~ .. .

> iy min (7, w;|s2; + . — 2;]), hence minimizes lo(s, t.)

as the rest parts are constant with regard to ¢,. Therefore, a

solution s* is always associated with corresponding (¢%, k*)

such that that s* 25~ +t; — 2z = 0. O

Lemma 2 allows us to reduce Eq. 11 to the subproblem
with respect to some index k. For each possible index k, the
objective is formed as:

n
min Z min (7, w;|s&; — sx;|) +min(7, wi|sg; —yi|)
g

13)
(zi = 21)]),

which is solvable in O(N log N) complexity. We enumer-
ate all possible indices for k£ and find the minimum. There-
fore, the total time complexity is O(N?log N).

+ min(7, w;|s(Z; — 2k) —

In our implementation, the point map is resized to low
resolution (64 x 64) for alignment, with N = 4096 at most.
The algorithm is further parallelized with tensor operations
on GPUs.

Algorithm 3 ROE alignment w/ 1-D shift

input: point arrays 15[1..N7 1..3], P[1..N, 1..3],
weight array W[1..N]

output: the optimal scale s*, shift ¢,
objective value [* to Eq. 10 or Eq. 11

W1..3N] « repeat each element in W 3 times

Initialize arrays s[1..N], [[1..N], t,[1..N]

for k =1to N do > parallel computation
X[1...3N]« FLATTEN(P[1..N, 1..3] — {0,0, P[k, 3]})
X[1...3N]« FLATTEN(P[1..N, 1..3] — {0, 0, P[k, 3]})
(s[k],1[k]) < SOLVESUBPROBLEM(X,X, W)
t.[k] < P[k,3] — s[k] - P[k, 3]

end for

k* < index of the minimum in [[1..N]

s* < s[k*), I <« U[k*], 13 < t.[k7)

return s*, ¢7, [*

Alignment with 3D shift.
rewrite the objective as follows:

We apply truncation and

Z[min (1, w;|sd; — x;]) + min (7, w;|s9; — yil)]

m%n min(7, w;|s&;+ t, — x4|)
S
=1 ) . (14)
+ min(7, w;|s9; + ty — yil)
+ min(7, w;|s2; +t. — z)).

Similarly to the proof of Lemma 2, there exists at least
one group (K7, k3, k3, s*,t*) such that s* 2y + 15 — g =
0, s" kg +t;, —yrs = 0,82z +1L — 212 =0, and (s*,t%)
minimizes the Ob_]CCthC However the O(N 4log N) time
complexity of a brute-force search is prohibitive. Mo-
tivated by the strong locality of surface points within a
3D sphere, we introduce a reasonable assumption, k; =
ke = ks, to obtain an approximately optimal solution with
O(N?log N) complexity. This assumption posits that the
predicted and ground truth patches can be well aligned un-
der the condition that one corresponding pair of points co-
incides. The effectiveness of the approximated solution has
been empirically validated.

Algorithm 4 ROE alignment w/ 3-D shift

input: point arrays P[1..N,1..3], P[1..N, 1..3],
weight array W[1..N]

output: the optimal scale s*, shift t*,
objective value [* to Eq. 14

W[1..3N] < repeat each element in W 3 times
Initialize arrays s[1..N], [[1..N], t[1..N, 3]
for k =1to N do > parallel computation

X[1...3N]« FLATTEN(P[1..N, 1..3] — P[k,1..3])
X|[1...3N]+ FLATTEN(P[1..N,1..3] — P[k,1..3))

(s[k], l[k]) « SOLVESUBPROBLEM(X X, W)
t[k] < P[k] — s[k] - P[]

end for

k* < index of the minimum in [[1.. V]

§* < s[k*], I* « l[k*], t* < t[k*]

return s*, t*, [*

B. Experiment Details
B.1. Training Data

The datasets used in our training are listed in Table 1. The
number of frames may slightly differ from that of the origi-
nal data because some invalid frames are dropped.

To assign balanced weights to the datasets for training,
we compute the retrieval probability of each dataset relative
to OpenlmagesV7 [15], a large and diverse natural image
dataset. Specifically, we leverage DINOv2 [22] to extract
feature vectors and calculate the probability that the near-
est neighbor of a randomly selected image from Openlm-
agesV7 is found in each respective training dataset.



Name Domain #Frames Type Weight
A2D2[9] Outdoor/Driving 196K C 0.8%
Argoverse2[37] Outdoor/Driving 1.1M C 7.4%
ARKitScenes[2] Indoor 449K B 8.6%
DIML-indoor[5] Indoor 894K D 4.8%
BlendedMVS[39] In-the-wild 115K B 12.0%
MegaDepth[17] Outdoor/In-the-wild 92K B 5.6%
Taskonomy[41] Indoor 3.6M B 14.1%
Waymo[28] Outdoor/Driving 788K C 6.4%
GTA-SfM[33] Outdoor/In-the-wild 19K A 2.8%
Hypersim[25] Indoor 75K A 5.0%
IRS[34] Indoor 101K A 5.6%
KenBurns[21] In-the-wild 76K A 1.6%
MatrixCity[16] Outdoor/Driving 390K A 1.3%
MidAir[8] Outdoor/In-the-wild 423K A 4.0%
MVS-Synth[13] Outdoor/Driving 12K A 1.2%
Spring[ 18] In-the-wild 5K A 0.7%
Structured3D[42] Indoor 77K A 4.8%
Synthia[26] Outdoor/Driving 96K A 1.2%
TartanAir[36] In-the-wild 306K A 5.0%
UrbanSyn[11] Outdoor/Driving 7K A 2.1%
ObjaverseV1[4] Object 167K A 4.8%
T Label quality Applied losses
ype Accuracy Range Density Lg Lsy Lsg Lsz Ln Ly
A. Synthetic Perfect oo Dense v v v v v/
B. SEM/MV Recon| High oo Dense&Partiall v vV v
C. LiDAR/Laser High ~ 100m Sparse v 7/ v
D. Kinect Medium ~ 10m Dense v v

Table 1. Datasets used for training and tailored loss combination.

B.2. Evaluation Data

The raw evaluation datasets are processed accordingly for
reliable evaluation and fair comparison. We report the de-
tails as follows.

* NYUv2 [20]. We use the official test split of 654 samples.
Due to the inaccuracy of ground truth values captured by
Kinect V1 near boundaries, we filter and remove bound-
ary regions by a simple edge detection method. Specif-
ically, we set a threshold for the difference between the
minimum and maximum depth values within a local win-
dow. Depth values beyond 5 meters are excluded because
they are unreliable due to the limited sensor range [29].
Additionally, we manually mask out areas with reflective
and transparent surfaces, such as mirrors and glass, which
cannot be accurately captured by the sensor.

o KITTI [30]. We utilize the test split of 652 images of
Eigen et al. [7] following previous works. The original
resolution of 1242 x 375 does not match our training as-
pect ratio (ranging from 1 : 2to 2 : 1), so we apply center
cropping to obtain a resolution of 750 x 375 from the raw
images.

« ETH3D [27]. All 454 images are included. The im-
ages are undistorted with the official calibration data and
downsized from the original resolution of 6202 x 4135 to
2048 x 1365.

* iBims-1 [14]. All 100 images are included at an original

Processed

Figure 1. Examples of evaluation data preprocessing: (a) Re-
moving mirror and boundary artifacts from the ground truth depth
in NYUv2. (b) Excluding sky regions in Sintel. (c) Removing
boundary artifacts from the ground truth depth in DIODE.

resolution of 640 x 480.

* GSO [6]. The dataset contains 1,030 objects. For each
object, we render a single view at 512 x 512 resolution.
The view is randomly sampled with a FOV ranging from
30° to 60°. The object is centered in the image, and
its bounding box occupies approximately 70% of the im-
age’s size.

 Sintel [3]. We use all 1,064 frames and center-crop the
images to 872 x 436 from the original 1024 x 436 res-
olution to fit our aspect ratio range. The sky regions are
manually masked out because evaluating models with sky
depth included is not meaningful.

* DDAD [10]. We randomly select 1,000 samples from the
validation set. The dataset was collected using multiple
cameras and LiDAR sensors mounted on a moving vehi-
cle. Some cameras inadvertently capture parts of the ve-
hicle, causing discrepancies with the sensor’s depth data.
To address this issue, we crop the regions that are not ob-
structed by the vehicle itself.

* DIODE [31]. We utilize the official validation split,



which includes 325 indoor images and 446 outdoor im-
ages at an original resolution of 1024 x 768. Due to ar-
tifacts in ground truth depth values near the boundaries
in this dataset, we identify and remove these boundary
regions using a similar approach as described above.

B.3. Evaluation Protocol

For all our models and baselines, predictions and ground

truth are aligned in scale (and shift, if applicable) for each

image before measuring errors. To clarify the notations in

this section:

* pP; and p; are the predicted and ground-truth points, re-
spectively.

e Z; and z; are the predicted and ground-truth depths, which
are the Z-coordinate of corresponding points.

e M is the mask of valid ground-truth.

* a and b denote the scale and shift used to align predictions
with the ground truth for evaluation, to avoid confusion
with similar symbols used in the training objectives.

* Scale-invariant point map. The scale a* to align predic-
tion with ground truth is computed as:

. : 1.
a™ = argmin Z ;Hapi —pill, (15)
¢ iem ™
 Affine-invariant point map. The scale ¢* and shift b*
are computed as:

* * . 1 ~

(a*,b") = argmin E —llapi +b—pif1.  (16)
ab oy F

¢ Scale-invariant depth map, the scale a* is computed as

= argmm Z

ze./\/l

\azl 2| a7

¢ Affine-invariant depth map. The scale a* and shift b*
are computed as

(a™,b%) —argmlnz \azl
ieM %

b—Zi‘. (18)

» Affine-invariant disparity map. We follow the estab-
lished protocol for affine disparity alignment [24], using
least-squares to align predictions in disparity space:

(a*,b") = argmin Z (ad; +b—d;)%,  (19)
S ieM

where d; is the predicted disparity and d; is the ground
truth, defined as d; = 1/z;. To prevent aligned dispari-
ties from taking excessively small or negative values, the
aligned disparity is truncated by the inverted maximum
depth 1/zmax before inversion. The final aligned depth 2

is computed as:
zr = = ! . (20)

max(a*d; + b*, 1/zmax)

C. More Results

Full table of depth estimation results In Table 2, we
present detailed results for depth estimation where methods
that predict metric or scale-invariant depth are also evalu-
ated on affine-invariant depth and disparity for a fair com-
parison.

More qualitative comparisons Fig. 3 and Fig. 4 present
additional visual comparisons on zero-shot evaluation
datasets and in-the-wild images. Our method is compared
with LeReS [40], UniDepth [23], DUSt3R [35], Metric3D
V2 [12] and Depth Anything V2 [38]. Since Metric3D
V2 and Depth Anything V2 predict depth map and require
ground truth camera focal to obtain 3D points cloud results,
we visualize them using our estimated focal lengths.

In the supplementary videos, we present extensive and
uncurated comparisons using the first 100 images from the
DIV2K]1] dataset.

More visual results In Fig. 5 and Fig. 6, we demonstrate
more reconstruction results of our method for more open-
domain images.

D. Limitations and Future Work

While our model demonstrates strong performance, accu-
rately capturing thin structures remains a significant chal-
lenge. This difficulty arises from the network’s limited ca-
pacity and the presence of noisy real-world training data.
As illustrated in Fig. 2, our model may fail to recover these
intricate structures.

Additionally, while monocular video reconstruction
holds great promise as an application, achieving temporal
consistency presents substantial challenges. Our model, de-
signed for single-image input, cannot inherently maintain
temporal coherence due to the ambiguity of the task. Ad-
dressing this issue would require non-trivial solutions, such
as global optimization techniques. Given the rapid advance-
ments in video depth estimation, we believe that an end-to-
end model for monocular video reconstruction could sig-
nificantly benefit from our proposed techniques. Exploring
this direction is a compelling avenue for future work.

Figure 2. A failure case. Our model fails to capture the thin struc-
ture of the fence, leading to a flattened geometry.



NYUv2 | KITTI | ETH3D | iBims-1 GSO Sintel DDAD | DIODE Average

Method Rel') &1 |Rel.l 891 |Rel®y 694 [Reld 891 |Rel') 691 |Rel'y 891 |Rel') 891 |Rel®) 694 [Rel'y 4§91 Rank|
Scale-invariant depth
LeReS 12.1 82.6(19.2 64.8|14.2 78.4|14.0 78.8|13.6 77.9|30.5 52.1|26.5 52.0|18.2 69.6[18.5 69.5 7.31
ZoeDepth 10.4 87.3|7.45 93.213.23 99.9|127.4 61.8|17.0 72.8|11.3 85.2 5.50
DUSt3R 4.40 97.1|7.81 90.66.04 95.7|4.98 95.8(3.27 99.5|31.1 57.2|18.6 73.3|8.91 88.8|10.6 87.2 5.00
Metric3D V2 (4.69 97.414.00 98.5|3.84 98.5(4.23 97.7|2.46 99.9|20.7 69.8 3.29 98.4 2.07
UniDepth 3.86 98.4|3.73 98.6|5.67 97.0(4.79 97.4|4.18 99.7|28.3 58.8|10.1 90.5|6.83 92.8(8.43 91.6 3.00
DA V1 9.41 88.9(5.53 95.8/5.49 99.3|28.3 56.7|13.2 81.5|10.3 87.5 5.67
-metric indoor 154 736 | 941 889 | 553 958 | 549 993 | 283 567 | 242 574 | 103 875 -
-metric outdoor | 159 723 877 924 | 138 788 | 859 93.6 | 28.1 548 | 132 815 | 13.0 814 -
DA V2 5.03 97.3|7.23 93.7|6.12 95.5|4.32 97.9|4.38 99.3(23.0 65.2|14.7 78.0{7.95 90.0/9.09 89.6 4.06

-metric indoor | 5.03 97.3 | 7.61 909 | 612 955 | 432 979 | 438 993 | 23.0 652 | 16.6 734 | 795 90.0 | 938 887 -
-metric outdoor | 153 723 | 723 937 | 930 89.6 | 106 849 | 9.62 925 | 286 573 | 147 780 | 122 832 | 134 814 -
Ours 3.44 98.4|4.25 97.8|3.36 98.9|3.46 97.0/1.47 100 |19.3 73.4|9.17 90.5|4.89 94.7|6.17 93.8 1.62

Affine-invariant depth
LeReS 6.21 95.4|8.28 90.3|8.95 90.8|6.68 94.5(4.03 99.4|24.0 64.8|16.2 75.8|9.99 88.1|10.5 87.4 8.81
ZoeDepth 7.27 94.2|5.85 95.7|2.54 99.9(21.8 69.2(14.2 80.1|7.80 90.9 7.33
DUSt3R 3.73 97.8|7.30 91.6|4.96 96.4|3.94 96.6|2.55 99.6(25.4 64.2]116.9 76.2|6.68 92.6|8.93 89.4 6.62
Metric3D V2|3.94 97.6|3.50 98.4|3.24 99.0(3.28 98.3|2.10 99.4|26.6 71.7 2.75 98.7 3.64

UniDepth V1|3.40 98.6|3.55 98.7|4.92 97.5|3.76 98.2|12.48 99.9(24.9 64.1/9.46 90.84.90 96.2|7.17 93.0 3.62
Marigold 4.63 97.3|7.29 93.8|6.08 96.34.35 97.2|2.78 99.9|21.2 75.0|14.6 80.5|6.34 94.3|8.41 91.8 5.69
Geowizard |4.69 97.4|8.14 92.5/6.90 93.9|4.50 97.1|2.00 99.9(17.8 76.2|16.5 75.7|7.03 92.7|8.45 90.7 6.44
DA V1 6.23 95.214.23 97.3|1.98 100 (20.1 71.8|11.3 86.1]6.75 92.6 4.83
-metric indoor 995 865 | 623 952 | 423 973 | 198 100 | 201 718 | 17.0 740 | 675 926 -
-metric outdoor | 7.68  93.8 621 966 | 700 942 | 277 998 | 206 700 | 113 861 | 7.03 932 -
DA V2 4.16 97.9|6.77 94.3|4.63 97.2|13.44 98.3/1.44 100 |17.1 76.6|13.4 81.8|5.41 94.6|7.04 92.6 -
-metric indoor | 4.16 97.9 | 7.09 923 | 463 972 | 344 983 | 144 100 | 171 766 | 143 798 | 541 946 | 720 921 -
-metric outdoor | 8.65 91.0 | 677 943 | 724 935 | 680 935 | 229 100 | 224 67.1 | 134 818 | 819 907 | 947 89.0 2.94

Ours 2.92 98.6|3.94 98.0/2.69 99.2(2.74 97.9/0.94 100 |13.0 83.2|8.40 92.1|3.16 97.5|4.72 95.8 1.56
Affine-invariant disparity

LeReS 7.31 95.5(12.2 87.1|10.2 90.1|8.44 92.9|4.33 99.7|28.9 59.6(/23.4 73.0|10.7 88.3|13.2 85.8 8.25

ZoeDepth 8.07 94.016.19 96.1|2.60 99.9|26.9 66.3|14.1 81.7|8.17 92.0 6.75

DUSt3R 4.24 98.1|7.72 92.1|5.60 96.214.49 96.6|2.63 99.8|40.0 56.7|17.4 76.2|7.10 92.8|11.1 88.6 6.75

Metric3D V2 |13.4 81.5|3.76 98.2/4.30 97.7(8.55 92.3|1.80 100 |21.8 72.4 7.70 90.2 5.29

UniDepth V1|3.78 98.7|3.64 98.7|5.34 97.214.06 98.1]2.56 99.9|28.6 60.7|9.94 89.1|5.95 95.5/7.98 92.2 3.62
MiDaS V3.1 |4.58 98.1|6.25 94.7|5.77 96.84.73 97.411.86 100 |21.3 73.1|14.5 82.6/6.05 94.9|8.13 92.2 5.00

DA V1 4.20 98.4|5.40 97.0/4.68 98.2(4.18 97.6(1.54 100 |20.1 77.6|12.7 86.9|5.69 95.7|7.31 93.9 3.00
DA V2 4.14 98.3|5.61 96.7|4.71 97.9|3.47 98.5/1.24 100 |21.4 72.8|13.1 86.4|5.29 96.1|7.37 93.3 3.12
Ours 3.38 98.6/4.05 98.1/3.11 98.9(3.23 98.0(0.96 100 |18.4 79.5|/8.99 91.5|3.98 97.2|5.76 95.2 1.44

Table 2. Full table of comparison for depth map estimation. * methods have multiple model versions available for respective benchmarks,
among which the best for each benchmark is chosen for ranking, followed by the detailed results in smaller text size for each version.
denote models trained on respective benchmarks.



Input UniDepth DUSt3R DA V2*

Figure 3. Additional qualitative comparisons from the evaluation datasets. *: for methods without camera intrinsics prediction, ground-
truth camera intrinsics (and disparity shifts) were used to lift their results into 3D points. Best viewed with zoom.



UniDepth DUSt3R Metric3D V2* DA V2*

Figure 4. Additional qualitative comparisons for in-the-wild images from the DIV2K dataset. *: for methods without camera intrinsics
prediction, our camera intrinsics prediction were used to lift their results into 3D points. Supplementary videos contain more results. Best
viewed with zoom.



Figure 5. Additional visual results for open-domain images of our model (page 1 of 2). The columns from left to right are the input images,
reconstructed disparity maps, reconstructed surface geometry viewed from the source view, and three novel-view images, respectively.
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Figure 6. Additional visual results for open-domain images of our model (page 2 of 2). The columns from left to right are the input images,
reconstructed disparity maps, reconstructed surface geometry viewed from the source view, and three novel-view images, respectively.
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