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A. Additional Ablation Studies
We present the results of different reward models in Table 2.
Overall, the impact of excluding a specific reward model
(e.g., HPSv2 [11] or ImageReward [12]) demonstrates that
while these individual models positively contribute to spe-
cific tasks, they are not the sole determining factors, and their
combination maximizes performance improvement. This
further validates the importance of leveraging multiple re-
ward signals comprehensively, enabling the capture of more
holistic semantic features for semantic binding tasks.

We observe that after 7k iterations, the mask ratio sta-
bilizes, while FID briefly fluctuates before settling. This
temporary fluctuation is likely due to the model adapting to
the finalized mask pattern (Figure 2 (a)).

Inspired by Faster Diffusion [6], PnP [4], and DIFT [10],
which emphasize the decoder’s role in generation, we ap-
plied masking to the decoder. To reduce inference latency
(Table 1), we limited masking to linear layers, excluding
convolutional layers.

Table 1. Ablation study on the impact of different layers, with the
best results in bold.

Setting FID CLIP Add Param. Latency (s)

All 22.10 0.32 160.15M 6.27
Decoder

(q, k, v, o, conv) 21.79 0.33 81.69M 4.02

Decoder
(q, k, v, o) 21.88 0.33 55.06M 2.99

B. Additional Results
B.1. Visualization of Mask Position
We visualized the mask of the v matrix in the third attention
layer of the second decoder block in the U-Net, as shown
in Figure 4. Although the mask ratio consistently remains
at 8.24%, its positions vary across different timesteps. This

†Corresponding authors.

Table 2. Ablation study on the impact of different reward models
on T2I-CompBench, with the best results in bold.

Method
BLIP-VQA

Color (↑) Texture (↑) Shape (↑)

SD 1.5 [8] 0.3750 0.4159 0.3742

w/o HPSv2 [11] 0.4530 0.4871 0.4202
w/o ImageReward [12] 0.4502 0.4949 0.4254

MaskUNet 0.4958 0.4938 0.4529

Please select the result that matches "A mouse wearing a chef's hat, holding a tiny spoon" and has the best quality.

A B C D

Figure 1. An example of the user study.

indicates that the mask introduces timestep dependency, al-
lowing each timestep to have its unique U-Net weight distri-
bution.

B.2. Mask in different layers
A high mask ratio in layers 2-5 indicates that blocks 2 and
3 in the decoder are the key decision-making layers in UNet
computation (Figure 2 (b)).

B.3. More Mask Visualizations
We add more mask visualizations for image customization
task in Figure 2 (c) and will include them in the final version.
MaskUnet uses varying masking parameters for different
samples.

B.4. Mask analysis
We visualized the masks of q, k, and o (Figure 2 (d)), reveal-
ing significant timestep inconsistencies due to their dynamic
adaptation to timestep-specific features (q/k for attention
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Figure 2. More results.

weights, o for attention outputs). In contrast, v masks re-
main consistent, reflecting its role in preserving key content
features.

B.5. Timestep result difference analysis
MaskUNet selectively generates key structures earlier (red
boxes), while SD 1.5 uniformly refines the entire image (blue
boxes), see Figure 2 (e).

B.6. Efficiency analysis

The Table 3 shows that while training-free incurs higher
latency (66.82s), its computational overhead remains mini-
mal (+0.77 GFLOPS). Training achieves a trade-off, with a
moderate latency increase (2.99s vs. 2.14s for SD 1.5) while
keeping efficiency practical.



SD1.5 Full Fine-tune LoRA MaskUnet

A DSLR photo of a cat jumping over a 

fence, high-res

A attacks an upset cat and is then chased off

A cool astronaut floating in space.

A teddy bear walking in the snowstorm

A bald eagle made of chocolate powder, mango, and 

whipped cream

An astronaut riding a pig, highly realistic dslr photo, 

cinematic shot.

Figure 3. Quality results compared to other methods.

Table 3. Efficiency analysis.
Method Add Param GFLOPS Latency (s)

SD 1.5 0 156.00 2.14
Training 55.06M 156.03 2.99
Training-free 49.03M 156.77 66.82

B.7. More comparative results

The random mask can improve results in certain cases but
has worse overall performance (FID 270.22), which moti-

Table 4. More comparative results.

Method FID CLIP

Full Fine-tune 24.45 0.33
Random Mask 270.22 0.06
Dropout (ratio=0.1) 26.56 0.32

MaskUNet 21.88 0.33

vated us to propose two more stable and controllable mask-
ing strategies (Table 4, third-to-last row). We did not apply
dropout during FT. Thanks for the suggestion. We conduct
Full FT with dropout, it degraded performance (Table 4,
second-to-last row).

B.8. Zero-out strategy in DiT-based models

Table 5. More comparative results.
ImageNet 256 5k COCO 2017 5k Geneval

Model FID Model FID CLIP Overall
DiT 17.07 PixArt-alpha 39.40 0.33 0.48
MaskUnet 16.15 MaskUnet 37.83 0.33 0.53

The Table 5 demonstrates that our method is also appli-
cable to DiT-based models.

B.9. Text-to-video for More Visualization Results
Additional visualization results of zero-shot generation are
shown in the Figure 3. Figure 5 is the complete visualization
result of Text2Video-Zero [5]. It clearly demonstrates that
MaskUNet generates videos with greater temporal continu-
ity and semantic consistency, validating its effectiveness in
video generation.

B.10. User study details
The study participants consisted of 26 volunteers from our
university. The questionnaire comprised 46 questions, each
presenting several images: one generated by our method,
MaskUNet, and the others generated by alternative meth-
ods (Dreambooth [9], Textual Inversion [1], Reversion [3],
Text2Video-zero [5], SynGen [7], LoRA [2], SD [8], etc.).
An example of the questionnaire is shown in the Figure 1.
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Figure 4. Visualization of mask position at different time steps.
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Figure 5. Quality results by Text2Video-Zero [5] with or without mask.
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