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A. Overall
This supplementary material provides additional results to
support the main manuscript. First, in Section B, we ana-
lyze the parameter size of VRE and inference time. Next, in
Section C, we present experiments that integrate VRE into
OSEDiff [9]. These experiments demonstrate VRE’s strong
image understanding capabilities. In Section D, we validate
our method on downstream face recognition tasks. The results
show that our method outperforms others when used as a pre-
processing step. Additionally, we analysis the limitation and
future work in Section E. Finally, in Section F, we provide
more visual comparisons with state-of-the-art methods.

B. Parameters and Inference Time
Table 1 clearly shows that OSDFace achieves high inference
speed and low computational cost compared to other one-step
diffusion models. The VRE prompt embedder in OSDFace
significantly reduces the parameter count and MACs. This
reduction is notable when compared to the prompt embedder
used in OSEDiff [9], i.e., DAPE [10] with CLIP text encoder.

Additionally, generating text embeddings from input im-
ages does not conflict with generating latent vectors through
a VAE encoder. Therefore, we can introduce a parallel mech-
anism that could speed up both OSEDiff [9] and OSDFace.
Using parallel acceleration, our OSDFace could further re-
duce inference time by 14% on top of its fast performance.
All tests are conducted on an NVIDIA A6000 GPU.

C. Integrating VRE into OSEDiff
The existing representative one-step diffusion (OSD) im-
age restoration model, OSEDiff [9], does not focus on face
restoration tasks. In order to assess its applicability to face
restoration, we retrained it using the same dataset and experi-
mental settings as OSDFace, resulting in OSEDiff*. Further-
more, we integrated the proposed VRE into OSEDiff*, creat-
ing the enhanced model OSEDiff*+VRE.

As shown in Tab. 2, Tab. 3, and Fig. 1, OSEDiff*+VRE

*Equal contribution.
†Corresponding authors.

Wider 0504 OSEDiff OSEDiff* OSEDiff*+VRE

LFW D. Brazile OSEDiff OSEDiff* OSEDiff*+VRE

WebPhoto 10038 OSEDiff OSEDiff* OSEDiff*+VRE

Figure 1. Visual comparisons of various versions of OSEDiff [9].
OSEDiff*+VRE shows enhanced visual quality.

Prompt Embedder Inference Time (ms)Methods Param (M) MACs (G) Serialized Parallelized

OSEDiff [9] 353.41 141.45 130.75 125.54
OSDFace (ours) 28.63 99.47 119.00 102.83

Table 1. Complexity comparison during inference. “parallelized”
refers to the parallel execution of the prompt embedder and VAE
encoder, while “serialized” denotes a fully sequential execution ap-
proach. We provide the number of parameters (Param), multiply-
accumulate operations (MACs), and time during inference. All mod-
els are evaluated with 512×512 input image.

performs well in both quantitative metrics and visual qual-
ity. The incorporation of VRE significantly reduces informa-
tion loss during the image-text-embedding process, ensuring
more accurate data representation. Visual results indicate that
OSEDiff*+VRE prevents common issues like gender mis-
classification and unwanted artifacts. Additionally, it reli-
ably captures subtle facial expressions from the input images.
Besides, the IQA metrics demonstrate a competitive advan-
tage by consistently reducing the distribution differences from
the reference data. These experimental results demonstrate
that our proposed VRE substantially enhances face restora-
tion performance, particularly when applied to OSD models.
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Wider-Test LFW-Test WebPhoto-TestMethods C-IQA↑ M-IQA↑ MUSIQ↑ NIQE↓ FID↓ C-IQA↑ M-IQA↑ MUSIQ↑ NIQE↓ FID↓ C-IQA↑ M-IQA↑ MUSIQ↑ NIQE↓ FID↓

OSEDiff [9] 0.6298 0.4951 70.559 4.9388 50.274 0.6326 0.5037 73.401 4.7196 57.800 0.6457 0.5108 72.593 5.2611 117.510
OSEDiff* 0.6193 0.4752 69.101 5.0869 47.883 0.6186 0.4879 71.707 4.8002 51.048 0.6254 0.4823 69.816 5.3253 109.236
OSEDiff*+VRE 0.6637 0.4834 68.259 5.0490 41.490 0.6608 0.5015 70.826 4.8956 46.911 0.6410 0.4646 66.912 5.5233 95.566
OSDFace (ours) 0.7284 0.5229 74.601 3.7741 34.648 0.7203 0.5493 75.354 3.8710 44.629 0.7106 0.5162 73.935 3.9864 84.597

Table 2. Quantitative comparison on real-world datasets with one-step diffusion methods. C-IQA stands for CLIPIQA, and M-IQA stands
for MANIQA. The best and second best results are colored with red and blue, respectively.

Methods LPIPS↓ DISTS↓ MUSIQ↑ NIQE↓ Deg.↓ LMD↓ FID(FFHQ)↓FID(HQ)↓

OSEDiff [9] 0.3306 0.2170 71.467 5.1241 67.390 6.4141 73.484 37.210
OSEDiff* 0.3496 0.2200 69.981 5.3280 67.403 7.4082 81.362 37.131
OSEDiff*+VRE 0.3368 0.2420 69.089 5.3241 63.758 6.5365 67.785 36.356
OSDFace (ours) 0.3365 0.1773 75.640 3.8840 60.071 5.2867 45.415 17.062

Table 3. Quantitative comparison on the synthetic CelebA-Test dataset with one-step diffu-
sion methods. The best and second best results are colored with red and blue, respectively.

Figure 2. Visualization of the atmospheric tur-
bulence [1] range from 20,000 to 40,000.

D. Validation on Face Recognition
Face restoration, as a fundamental low-level vision task, could
enhance downstream face recognition tasks to achieve bet-
ter performance. We use the LFW [4] dataset as a bench-
mark for comparison, which includes 3,000 positive pairs and
3,000 negative pairs. Following DAEFR [7], we evaluate the
face recognition accuracy using the ArcFace [2] model un-
der different degradation levels. Specifically, we employ un-
seen atmospheric turbulence degradation [1] to simulate di-
verse degradation levels, with propagation lengths ranging
from 20,000 to 40,000, as illustrated in Fig. 2.

The experimental results in Fig. 3 demonstrate the superior
performance of our method across various degradation levels.
As degradation severity increases, our method significantly
improves precision at the same recall level. The ROC curve
shows that OSDFace makes fewer errors at specific true posi-
tive rates. Besides, OSDFace widens the gap between positive
and negative predictions, thereby improving classifier perfor-
mance. These findings indicate that our method provides sub-
stantial enhancements to downstream face recognition tasks.

E. Limitations and Future Work

We briefly analyze the limitations and future work. (1) Color
shift: OSDFace sometimes over-enhances contrast or satura-
tion in less degraded regions, causing color shifts in restored
face images. Although AdaIN [5] can fix this during infer-
ence, we aim for an end-to-end, color shift-free restoration.
Future work will explore content-aware color regularization
to improve color preservation. (2) Texture in complex re-
gions: OSDFace struggles with realistic skin textures and fine
details in complex regions like limbs or fingers. This arises
from the model’s focus on face features, with limited train-
ing data for non-facial parts with similar skin textures. Fu-
ture work will explore semantic information extraction and
domain-specific priors to improve the handling of these ar-
eas. (3) Generalization to low-degradation images: OSDFace
was not trained on minimal degradation images but still shows
some generalization. However, finer skin texture restoration
remains a focus, requiring higher resolution input and output
faces, HD training data, and texture-sensitive architectures.

F. Additional Visual Comparisons
These comparisons demonstrate that our proposed OSDFace
generates high-quality faces and effectively preserves identi-
ties, even with severely degraded input images. Compared to
other methods, OSDFace more accurately recovers finer de-
tails and produces more realistic faces. To illustrate these ad-
vantages further, we select various representative images with
unique characteristics, which can be regarded as different face
categories. These images are briefly analyzed below.
Synthetic dataset. Visualized results are presented in Fig. 4,
Fig. 5, and Fig. 6. Compared to other methods, OSDFace
produces more natural-looking restorations with greater de-
tail. This is especially evident in the hair, whether long, short,
straight, or curly. Additionally, our method effectively re-
stores occluded regions, such as an arm covering the mouth
or bangs obscuring the eyes. For profile views, OSDFace
naturally recovers facial contours. In some ground truth im-
ages with blurred backgrounds, OSDFace performs well, even
achieving higher quality and greater detail than the original
HQ images. In scenarios with complex backgrounds, many
VQ-based methods, such as VQFR [3], CodeFormer [13],
and DAEFR [7], fail to restore natural backgrounds. These
methods often produce wallpaper-like outputs, exhibit color
distortions, or even blend the person’s clothing with the back-
ground. In contrast, OSDFace, which combines VQ Dict and
diffusion model, successfully generates harmonious faces.
Real-world dataset. More visual comparisons on real-world
datasets are shown in Fig. 7, Fig. 8, Fig. 9, and Fig. 10. Our
OSDFace demonstrates strong capabilities in detail genera-
tion and boundary distinction. Some images contain multiple
closely positioned faces, such as image 0026 in the Wider-
Test and Damon Stoudamire in the LFW-Test. Our method
successfully restores each individual face. In Wider 0003,
only OSDFace successfully generates complete glasses and
clearly separates the arm from the face. For faces with vary-
ing skin tones, our method consistently maintains the realism
of the images. Furthermore, our approach accurately restores
facial accessories, including patterns on hats (Wider 0026),
bandages (Daniel Osorno in LFW-Test), and earrings (Wider
0173). In old photo restoration scenarios, our OSDFace also
effectively handles unknown degradations.
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Figure 3. Quantitative results on the LFW dataset [4] for face recognition using the official ArcFace [2] MS1MV3 R50 model. The evaluated
metrics include precision-recall (PR) curves, receiver operating characteristic (ROC) curves, F1 scores, and mean sample distance histograms.
The mean sample distance is defined as the difference between the average cosine similarity of predicted positive pairs and predicted negative
pairs. “w/o FR” refers to the absence of the face restoration process. Atmospheric turbulence parameters range from 20,000 to 40,000.



HQ - CelebA 0063 RestoreFormer++ [8] VQFR [3] CodeFormer [13] DAEFR [7] PGDiff [11]

LQ - CelebA 0063 DifFace [12] DiffBIR [6] OSEDiff [9] OSEDiff* [9] OSDFace (ours)

HQ - CelebA 0064 RestoreFormer++ [8] VQFR [3] CodeFormer [13] DAEFR [7] PGDiff [11]

LQ - CelebA 0064 DifFace [12] DiffBIR [6] OSEDiff [9] OSEDiff* [9] OSDFace (ours)

HQ - CelebA 0080 RestoreFormer++ [8] VQFR [3] CodeFormer [13] DAEFR [7] PGDiff [11]

LQ - CelebA 0080 DifFace [12] DiffBIR [6] OSEDiff [9] OSEDiff* [9] OSDFace (ours)

Figure 4. More visual comparison of the synthetic CelebA-Test dataset in challenging cases. Please zoom in for a better view.



HQ - CelebA 0124 RestoreFormer++ [8] VQFR [3] CodeFormer [13] DAEFR [7] PGDiff [11]

LQ - CelebA 0124 DifFace [12] DiffBIR [6] OSEDiff [9] OSEDiff* [9] OSDFace (ours)

HQ - CelebA 0125 RestoreFormer++ [8] VQFR [3] CodeFormer [13] DAEFR [7] PGDiff [11]

LQ - CelebA 0125 DifFace [12] DiffBIR [6] OSEDiff [9] OSEDiff* [9] OSDFace (ours)

HQ - CelebA 0186 RestoreFormer++ [8] VQFR [3] CodeFormer [13] DAEFR [7] PGDiff [11]

LQ - CelebA 0186 DifFace [12] DiffBIR [6] OSEDiff [9] OSEDiff* [9] OSDFace (ours)

Figure 5. More visual comparison of the synthetic CelebA-Test dataset in challenging cases. Please zoom in for a better view.



HQ - CelebA 0323 RestoreFormer++ [8] VQFR [3] CodeFormer [13] DAEFR [7] PGDiff [11]

LQ - CelebA 0323 DifFace [12] DiffBIR [6] OSEDiff [9] OSEDiff* [9] OSDFace (ours)

HQ - CelebA 0448 RestoreFormer++ [8] VQFR [3] CodeFormer [13] DAEFR [7] PGDiff [11]

LQ - CelebA 0448 DifFace [12] DiffBIR [6] OSEDiff [9] OSEDiff* [9] OSDFace (ours)

HQ - CelebA 0509 RestoreFormer++ [8] VQFR [3] CodeFormer [13] DAEFR [7] PGDiff [11]

LQ - CelebA 0509 DifFace [12] DiffBIR [6] OSEDiff [9] OSEDiff* [9] OSDFace (ours)

Figure 6. More visual comparison of the synthetic CelebA-Test dataset in challenging cases. Please zoom in for a better view.



Wider 0003 RestoreFormer++ [8] VQFR [3] CodeFormer [13] DAEFR [7]

PGDiff [11] DifFace [12] DiffBIR [6] OSEDiff* [9] OSDFace (ours)

Wider 0026 RestoreFormer++ [8] VQFR [3] CodeFormer [13] DAEFR [7]

PGDiff [11] DifFace [12] DiffBIR [6] OSEDiff* [9] OSDFace (ours)

Wider 0047 RestoreFormer++ [8] VQFR [3] CodeFormer [13] DAEFR [7]

PGDiff [11] DifFace [12] DiffBIR [6] OSEDiff* [9] OSDFace (ours)

Figure 7. More visual comparison of the real-world Wider-Test dataset in challenging cases. Please zoom in for a better view.



LFW Anna Faris RestoreFormer++ [8] VQFR [3] CodeFormer [13] DAEFR [7]

PGDiff [11] DifFace [12] DiffBIR [6] OSEDiff* [9] OSDFace (ours)

LFW Damon Stoudamire RestoreFormer++ [8] VQFR [3] CodeFormer [13] DAEFR [7]

PGDiff [11] DifFace [12] DiffBIR [6] OSEDiff* [9] OSDFace (ours)

LFW Daniel Osorno RestoreFormer++ [8] VQFR [3] CodeFormer [13] DAEFR [7]

PGDiff [11] DifFace [12] DiffBIR [6] OSEDiff* [9] OSDFace (ours)

Figure 8. More visual comparison of the real-world LFW-Test dataset in challenging cases. Please zoom in for a better view.



WebPhoto 00058 RestoreFormer++ [8] VQFR [3] CodeFormer [13] DAEFR [7]

PGDiff [11] DifFace [12] DiffBIR [6] OSEDiff* [9] OSDFace (ours)

WebPhoto 00079 RestoreFormer++ [8] VQFR [3] CodeFormer [13] DAEFR [7]

PGDiff [11] DifFace [12] DiffBIR [6] OSEDiff* [9] OSDFace (ours)

WebPhoto 00101 RestoreFormer++ [8] VQFR [3] CodeFormer [13] DAEFR [7]

PGDiff [11] DifFace [12] DiffBIR [6] OSEDiff* [9] OSDFace (ours)

Figure 9. More visual comparison of the real-world WebPhoto-Test dataset in challenging cases. Please zoom in for a better view.



Wider 0173 RestoreFormer++ [8] VQFR [3] CodeFormer [13] DAEFR [7]

PGDiff [11] DifFace [12] DiffBIR [6] OSEDiff* [9] OSDFace (ours)

WebPhoto 00109 RestoreFormer++ [8] VQFR [3] CodeFormer [13] DAEFR [7]

PGDiff [11] DifFace [12] DiffBIR [6] OSEDiff* [9] OSDFace (ours)

WebPhoto 10015 RestoreFormer++ [8] VQFR [3] CodeFormer [13] DAEFR [7]

PGDiff [11] DifFace [12] DiffBIR [6] OSEDiff* [9] OSDFace (ours)

Figure 10. More visual comparison of the real-world datasets in challenging cases. Please zoom in for a better view.


