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1. Related Work

• Benchmark Datasets for Event-based Detec-
tion. Event-based vision has gained significant attention
due to its high temporal resolution and its ability to
handle challenging conditions such as fast motion and
varying lighting. To advance object detection in this
domain, several notable datasets have been proposed. The
SEVD [1] dataset provides a comprehensive synthetic
event-based dataset for both ego-centric and fixed-camera
traffic perception, allowing researchers to explore complex
traffic monitoring scenarios. Similarly, the eTraM [8]
dataset captures real-world traffic scenes using neuromor-
phic sensors, specifically designed for vehicle detection
and tracking in urban environments. In the realm of
automotive applications, the Gen1 [3] dataset introduces
high-resolution event data recorded from vehicles, enabling
precise object detection in high-speed situations and under
challenging lighting conditions. Extending these capabil-
ities further, the 1Mpx [7] dataset offers even finer detail
for object detection, particularly useful in dynamic and
low-light environments. These datasets mark significant
advancements in event-based object detection, offering
diverse benchmarks that span various domains. Different
from these datasets, our proposed EvDET200K dataset
provides high-definition event streams captured under
different weathers and lightings and involves 10 categories.
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Figure 1. Illustration of the labels correlogram of our proposed
dataset.

2. EvDET200K Benchmark Dataset

2.1. Detail of EvDET200K dataset

Tab. 1 compares several event datasets for object detec-
tion in terms of key characteristics such as sensor type,
resolution, dataset scale, number of bounding boxes, dura-
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tion, number of classes, performance under various weather,
lighting and so on. Our EvDET200K (2024) is a new event
dataset with significant advantages, including the use of a
high-definition Prophesee EVK4-HD sensor (1280×720px
resolution), a large dataset scale (10,054 samples and 200K
bounding boxes), and comprehensive coverage of various
weather conditions (clear and rainy), lighting conditions
(daytime and nighttime), and complex scenarios (multi-
scene and multi-motion). Additionally, Our focus is on im-
proving the detection of small objects, we plan to capture
data from various perspectives, ensuring diversity across
a wide range of scenarios. Notably, small objects make
up 51% of the dataset, providing sufficient samples to
support effective training. Compared to other datasets,
EvDET200K stands out for its data diversity, detailed an-
notations, and adaptability to various tasks.
Fig. 1 illustration of the labels correlogram of our proposed
dataset. Each row and column represent different labels,
and each cell shows the correlation between those labels.
Darker colors in the cells indicate stronger correlations,
while lighter colors indicate weaker ones. The diagonal
cells show the self-correlation of each label.
Fig. 3 showcases a selection of representative samples from
our proposed EvDET200K dataset. These samples high-
light the diverse scenarios, object categories, and environ-
mental conditions captured in the dataset. They show-
case the dataset’s various object categories, lighting vari-
ations (daytime and nighttime), and dynamic scenes involv-
ing multi-object interactions. This diversity demonstrates
the robustness and adaptability of EvDET200K, making it
suitable for training models to achieve accurate and reliable
event-based object detection.

2.2. Data Collection and Annotation
The EvDET200K dataset is captured using the PROPHE-
SEE EVK4–HD event camera with a resolution of 1280 ×
720. During the actual shooting process, we always adhere
to the above principles to ensure that our proposed dataset
contains rich event data and diverse challenges. We con-
vert each video into five frame images and manually anno-
tate them. For the annotation, we use the XYXY format to
store bounding-box coordinates, with each annotation rep-
resented as a five-tuple (x1, y1, x2, y2, cls), where x1, y1
denote the top-left corner of bounding-box and x2, y2 de-
note the bottom-right corner, along with the class label cls.
The annotations for each video are saved in a JSON file.

3. Experience

3.1. Dataset and Evaluation Metric
In addition to the newly proposed EvDET200K dataset, we
also conducted a comparison with several state-of-the-art
detectors on the N-Caltech101 [6] dataset to validate the

Figure 2. Visualization of the characteristics of different transfor-
mations.

generalization capability of our method. The N-Caltech
dataset contains 101 object categories and approximately
9,000 event streams, which are split into training and test
sets in an 8:2 ratio. This dataset features complex and vari-
able backgrounds, which present significant challenges for
detection algorithms. For evaluation metrics, we used the
mean Average Precision (mAP) at different IoU thresholds,
the most commonly used metric in object detection. We
also report Precision and Recall to assess the accuracy of
predictions and the ability to detect positive instances. Ad-
ditionally, we measured the number of parameters, FLOPs,
and FPS for each detector, providing a more comprehensive
and accurate understanding of the models’ performance.

3.2. Implementation Details
For training the detector, we set the number of epochs to
80. The model is optimized using the AdamW optimizer
with an initial learning rate of 0.001 and weight decay of
0.0001. The batch size is set to 6, and the input image
size is 640x640. Our code is implemented in Python us-
ing the PyTorch framework, and the experiments are con-
ducted on a server equipped with an AMD EPYC 7542 32-
Core Processor CPU and an NVIDIA RTX 4090 GPU. This
configuration ensures efficient training and helps the model
achieve stable convergence through the use of the AdamW
optimizer’s adaptive learning rate and regularization.

3.3. Ablation Study
Analysis on frequency of expert triggering across differ-
ent stages. For the same scene, different transformations
yield varying results, as shown in Fig. 2 In this event de-
tection task, DCT is suitable for small targets, HT is suit-
able for complex scenarios, while DFT is more generalized.
Therefore, effectively combining these transformations can
achieve more flexible and superior performance. The acti-
vation frequency of different experts across different stages
is shown in the Tab. 2. It reveals that the model prefers DFT
in the shallow stages, and a noticeable divergence can be
found in the latter two stages. We believe that DFT has an
advantage in extracting generalized features, while the other



Table 1. Comparison of event datasets for object detection. (CL: clear, RA: rainy, DT: daytime, NT: nighttime, MS: multi-scene, MM:
multi-motion.)

Dataset Year Sensor Resolution Scale Bbox Duration Class Real
Weather Lighting Object
CL RA DT NT MS MM

N-Caltech [6] 2015 Simulator - 9000 9K 1-10s 101 ✓ ✓ ✓

SEVD [1] 2024 Simulator - - 9M 2-30m 6 ✓ ✓ ✓ ✓ ✓

DDD17 [2] 2017 DAVIS 346B 346×260px 36 - 1-50m 7 ✓ ✓ ✓ ✓ ✓ ✓

DDD20 [5] 2020 DAVIS 346B 346×260px 216 - 1-50m 7 ✓ ✓ ✓ ✓ ✓

Gen1 [3] 2020 Prophesee Gen1 304×240px 2357 255K 30-120s 2 ✓ ✓ ✓ ✓

1Mpx [7] 2020 Prophesee Gen2 1280×720px 929 25M 30-120s 3 ✓ ✓ ✓ ✓

DSEC [4] 2021 Prophesee Gen3.1 640×480px 60 390K 1-30m 8 ✓ ✓ ✓ ✓

EvDET200K (Ours) 2024 Prophesee EVK4–HD 1280×720px 10054 200K 2-5s 10 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Figure 3. Illustration of some representative samples of our proposed EvDET200K dataset.



Table 2. The frequency of expert triggering across different stages.

DFT DCT HT
Stage 1 43121 4314 2835
Stage 2 40565 6032 3673
Stage 3 24329 17328 8613
Stage 4 28653 16752 4865

Table 3. Ablation studies on different input resolution.

Resolution mAP mAP@50 mAP@75 FLOPs
256×256px 40.0 69.7 39.5 11.9G
448×448px 49.7 78.4 52.1 36.3G
512×512px 52.0 79.9 54.7 47.2G
640×640px 52.9 80.4 55.8 73.4G

two can better model data with different characteristics.
Adopting mixture of transformations (MoT) for better

results mainly due to the following reasons: 1) Superior
Signal Representation: The integration of various trans-
formations offers a richer signal representation. For in-
stance, DCT excels in representing smooth areas in images,
while DFT is adept at handling periodic features. 2) Com-
putational Optimization: The computational efficiency of
HT may surpass that of DFT and DCT in certain scenar-
ios. 3) Enhanced Robustness: Different transformations ex-
hibit varying robustness against different types of errors and
noise. 4) Adaptability: MoT allows for the adaptive selec-
tion of the most suitable transformation method based on
the characteristics of the signal, thereby enhancing process-
ing flexibility and efficiency.
Analysis on Different Resolutions of Event Stream. In
this section, we investigate the impact of event stream
resolution on detection performance. We conduct ex-
periments with four different resolutions: 256×256px,
448×448px, 512×512px, and 640×640px. As shown
in Tab. 3, we observe that the 256×256px res-
olution achieves 40.0/69.7/39.5, 448×448px achieves
49.7/78.4/52.1, 512×512px achieves 52.0/79.9/54.7, and
640×640px achieves 52.9/80.4/55.8. Intuitively, higher
resolution event streams retain more spatial information,
which can positively influence the model’s performance.
Our model’s performance at lower resolutions is not par-
ticularly outstanding, but it still achieves strong results at
intermediate resolutions, demonstrating its adaptability to
scenarios with limited computational resources.
Analysis on Different Channels in Each Stage. Tab. 4
presents the changes in mAP, FLOPs, and parameters at
different stages of the model with different channel config-
urations. We list two MHCO configurations: (2,2,6,2) and
(2,2,18,2), each paired with two sets of channel configura-
tions: (64, 128, 256, 512) and (96, 192, 384, 768). Specifi-
cally, with the (2,2,6,2) configuration, mAP increases from

Table 4. Ablation studies on different channels in each stage.

Layer (2,2,6,2) (2,2,18,2)
Channel (64,128,256,512) (96,192,384,768) (64,128,256,512) (96,192,384,768)

mAP 50.4 52.6 51.9 52.9
FLOPs 18.0G 39.2G 33.1G 73.4G
Param 19.4M 36.2M 29.7M 58.7M

50.4 to 52.6; with the (2,2,18,2) configuration, mAP rises
from 51.9 to 52.9. This indicates that increasing the num-
ber of channels contributes to performance improvement.
However, increasing the number of channels also leads to
higher computational costs and an increase in the number
of parameters. For the (2,2,6,2) configuration, FLOPs in-
crease from 18.0G to 39.2G, and the number of parameters
increases from 19.4M to 36.2M. It is important to balance
the performance gain with the computational and storage
overhead, depending on the specific application and hard-
ware constraints.

4. Visualization

• Detection Results. The comparison shown in Fig 4 illus-
trates the detection results of our proposed MvHeat-DET
alongside DERT, SpikeYOLO, and RVT detectors. As seen
in the figure, our detector demonstrates strong performance
even in dense scenes, whereas the other detectors tend to
suffer from missed detections or false positives in such en-
vironments.
• Feature Maps. Fig. 5 shows representative feature map
visualizations of our proposed method on the EvDET200K
dataset. It is evident that, even in challenging scenarios,
our method is still able to focus on the key detection ar-
eas, demonstrating the effectiveness of our model. It also
compares the feature maps of our method with the vHeat
model. Our model is able to focus on the detection targets
effectively from the second stage, while vHeat only begins
to focus on the key areas at the fourth stage. This indi-
cates that we can design smaller network architectures to
achieve better balance between performance and calculate
consumption.

5. Discussion

• What is role of the e−k(v2
x+v2

y)t? We call e−k(v2
x+v2

y)t

the thermal diffusivity coefficient, which serves as an adap-
tive filter in the frequency domain to facilitate visual heat
conduction. Different frequency values manifest as distinct
image patterns: high frequencies correspond to edges and
textures, while low frequencies represent flat or smooth re-
gions. By leveraging adaptive thermal diffusivity, MHCO
selectively enhances or suppresses these patterns within in-
dividual feature channels. By aggregating the processed
features across all channels, EvHeat-DET achieves a robust
and comprehensive feature representation.



Figure 4. Visualization of the detection results of ours and other detectors. (MC: misclassification, UD: undetected, OD: over-detected,
LD: large deviation.)

Figure 5. Visualization of the feature maps compared with vHeat.

• What is the relationship/difference between MHCO
and self-attention? MHCO operates in the frequency do-
main, enabling it to influence all image patches through fre-
quency filtering. This mechanism dynamically propagates
energy via heat conduction, facilitating the perception of
global information in the input image. Unlike self-attention,
which relies on token similarity, MHCO is a distinctive at-
tention mechanism rooted in the interpretable principles of
physical heat conduction. Consequently, MHCO is more
efficient than self-attention, as it avoids the computational
overhead of evaluating pairwise relevance across all image
patches.
• Why choose MoE? MoE significantly enhances model
capacity by integrating a large number of expert networks.
During inference, only a small subset of experts is activated,
reducing computational cost. Each expert focuses on spe-

cific types of data or task features, demonstrating strong
adaptability. In our design, DFT is effective for analyz-
ing periodic signals and provides comprehensive frequency-
domain information. DCT concentrates most of the energy
in the low-frequency components, which typically contain
richer global information in images, offering advantages in
small object detection. HT is well-suited for representing
sparse signals and excels at extracting edges and textures,
features commonly found in small objects that appear near
image boundaries. Moreover, HT has low computational
complexity, making it suitable for resource-constrained sce-
narios. By combining these three types of experts, we aim
to achieve a balance between detection performance and
computational efficiency.



6. Limitation Analysis and Future Works
There is still room for improving our model. For instance,
when the model is able to obtain good feature outputs in
the shallow layers (as shown in Fig. 5), we can consider
reducing the number of layers to decrease the model’s com-
plexity and achieve higher detection efficiency. Addition-
ally, the current model does not fully leverage the temporal
information. In the future, we will explore the use of 3D
heat conduction inference, combined with the rich tempo-
ral information in the event stream, to enable more efficient
detection.
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