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OpenSDI: Spotting Diffusion-Generated Images in the Open World

Supplementary Material

In this supplementary material, we provide additional001
details and results to complement the main paper. Section 1002
offers a step-by-step explanation of the OpenSDID creation003
pipeline, detailing the processes and tools used. Section 2004
includes a comprehensive analysis of the dataset’s diversity005
and quality, along with a thorough discussion of the eth-006
ical and bias considerations. Section 3 provides a more007
detailed comparison of the proposed MaskCLIP with re-008
lated works, highlighting its unique contributions and ad-009
vantages. To further validate the performance and robust-010
ness of MaskCLIP, we present additional experimental re-011
sults in Section 4 to validate the performance and robustness012
of MaskCLIP, including cross-dataset evaluations on tradi-013
tional image forgery datasets and more recent AI-generated014
image benchmarks, robustness analysis under image degra-015
dation, and multiple runs to ensure stability. Addition-016
ally, we provide visualizations of the results and datasets017
in Sections 5 and 6, offering intuitive insights into the data018
and the method’s performance. We are committed to mak-019
ing our research reproducible and accessible to the broader020
community. Therefore, we have made both the OpenS-021
DID dataset and the complete codebase publicly available at022
https://github.com/iamwangyabin/OpenSDI.023

1. OpenSDID Creation Pipeline024

To create our OpenSDID, we designed a comprehensive025
framework to automatically generate a large and diverse set026
of edited images using advanced text-to-image (T2I) dif-027
fusion generative models. As illustrated in Figure 1, the028
process consists of four key steps: (A) load real images029
from a database, (B) generate textual instructions for edit-030
ing, (C) create visual masks for editing, and (D) produce AI-031
generated images with instructions and masks. For global032
image image generation, OpenSDID merely uses (B) and033
(D) without using masks to generate images.034

We begin by randomly selecting an authentic image035
from the Megalith-10M database [3]. Next, we randomly036
choose a state-of-the-art large vision-language model, such037
as LLaMA3 Vision [1], LLaVA [24], InternVL2 [6], or038
Qwen2 VL [44], to generate detailed edit suggestions.039
These models are selected for their ability to produce high-040
quality and contextually relevant edit instructions, ensuring041
that the subsequent image manipulations are both creative042
and realistic. The prompts used to generate these edit sug-043
gestions are carefully crafted to guide the model in produc-044
ing high-quality and relevant modifications. We emphasizes045
the importance of considering a wide range of potential046
modifications, including face transformations, hair modifi-047

cations, body alterations, clothing and accessory changes, 048
object replacements, background change, style modifica- 049
tions, and other adjustments. Below is an example of the 050
prompts that are likely to be used: 051

Prompt

You are an image editor with decades
of experience in digital manipulation
and a reputation for innovation.
Your expertise spans across various
genres,including portrait retouching,
architectural visualization,
product photography, and surreal
composites. Your task is to analyze
image descriptions and propose
compelling, realistic edits that
could dramatically enhance or
transform the image in unexpected
yet believable ways.

When presented with an image,
consider a comprehensive range of
potential modifications.
These modifications could be:
• Face transformations
• Hair modifications
• Body alterations
• Clothing and accessory changes
• Object replacements or additions
• Background transformations
• Architectural style modifications
• Vehicle transformations
• Food alterations and adjustments

Your suggestions should be both
imaginative and feasible,
taking into account the original
image’s context, composition,
and lighting. Strive for a balance
between creativity and photorealism,
ensuring that your proposed edits
could theoretically be executed
by a skilled retoucher.

052

The output text edit instructions specify the selected re- 053
gion in the given real images and the desired content to 054
modify that area. Thus, based on the edit instructions for the 055
previous step, we utilize the Florence-2 [49] and SAM [16] 056
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Figure 1. An OpenSDID pipeline for local modification on real image content: (A) Sampling real images from the Megalith-10M dataset,
(B) Generating textual instructions for editing using Vision Language Models (VLMs), (C) Creating visual masks for modification through
segmentation models, and (D) Producing AI-generated images with image generators based on the instructions and masks. For global
image content generation, OpenSDID merely uses (B) and (D) without using real images to produce masks.

models to obtain precise mask regions through open vocab-057
ulary detection and segmentation. The Florence-2 model058
identifies specific regions within the image using text input,059
while the SAM model refines these regions by generating060
more precise masks. These masks are further processed by061
removing small disconnected components and expanded to062
ensure comprehensive coverage of the areas designated for063
inpainting.064

One of the state-of-the-art T2I diffusion models065
(SD1.5 [36], SD2.1 [36], SDXL [33], SD3 [10]) and066
Flux.1 [21]) is then employed to generate new images based067
on the masked regions and the corresponding prompts. The068
employed diffusion model takes three inputs: the original069
image, the generated mask, and the prompt describing the070
desired new content. To enhance the generation diversity,071
we randomly adjust key parameters, including the number072
of inference steps, guidance scale, and strength.073

Finally, we use CLIP [34] to compute similarity scores of074
the generated images and the given edit instructions. Only075
images that achieve high similarity scores are included in076
the final dataset, ensuring the maintenance of high-quality077
standards.078

2. OpenSDID Details and Analysis079

2.1. Comparison with Existing Datasets080

We give a more comprehensive comparison of the existing081
datasets in Table 1. In terms of user-like diversity, exist-082
ing datasets have often suffered from limited variability in083
user input due to their reliance on standardized generation084
pipelines. This strategy results in reduced diversity across085

generated images. While DiffusionDB made progress by 086
collecting generated images from public Discord channels 087
with varied generator parameters, it remained confined to 088
Stable Diffusion 1.5 and globally generated images. Our 089
dataset addresses these limitations by introducing substan- 090
tial user-like diversity through the integration of multiple 091
state-of-the-art Visual Language Models (VLMs), includ- 092
ing LLaMA3 Vision and LLaVA. These VLMs simulate a 093
broad spectrum of human-like editing behaviors, generat- 094
ing diverse text prompts that authentically reflect real-world 095
manipulation intentions. Additionally, we randomize the 096
generation hyperparameters during the diffusion process, 097
including sampling steps, guidance scale, and seed values, 098
to further enhance the diversity of our generated images. 099

Regarding Model Innovation, many existing datasets, 100
such as DFFD [7] and HiFi-Net [13], primarily focus on 101
images generated by GANs and early diffusion models, 102
lacking representation of recent technological advances. 103
OpenSDID addresses this limitation by incorporating mul- 104
tiple cutting-edge T2I diffusion models, including various 105
versions of Stable Diffusion [10, 33, 36] and Flux.1 [21]. 106
This comprehensive inclusion provides a more robust plat- 107
form for evaluating detection methods against the rapidly 108
evolving landscape of image synthesis technologies. 109

With respect to Manipulation Scope, existing datasets 110
often limit themselves to either global or local manipula- 111
tions. For example, DiffusionDB [46] and GenImage [52] 112
contain only globally synthesized images without local ed- 113
its, whereas OpenSDID uniquely combines both global 114
and local manipulations. This comprehensive manipula- 115
tion spectrum more accurately reflects real-world scenarios, 116
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where forgeries frequently involve complex combinations117
of global and localized alterations.118

2.2. Ethical and Bias Issues119

The proposed OpenSDID research has been approved by the120
University’s Ethics and Research Governance Online team.121
Furthermore, we provide a more detailed analysis of poten-122
tial ethical and bias issues in the dataset.123

Copyright Considerations. To ensure the dataset is pub-124
licly accessible, we have made every effort to ensure that125
all locally manipulated images based on [3] are free from126
copyright restrictions. All images used in this research are127
freely available under one or more of the following licenses:128
No Known Copyright Restrictions, United States Govern-129
ment Work, Public Domain Dedication (CC0), or Public130
Domain Mark. These licenses permit unrestricted use, mod-131
ification, and distribution of the visual materials. Specifi-132
cally, the images fall into the following categories: (a) ma-133
terials free from known copyright restrictions due to their134
age or provenance, (b) content created by U.S. federal gov-135
ernment employees as part of their official duties, (c) works136
explicitly dedicated to the public domain through Creative137
Commons Zero designation, or (d) materials marked as pub-138
lic domain due to copyright expiration or other legal provi-139
sions. Although these licenses do not require attribution, we140
have included source citations where applicable to maintain141
academic integrity and adhere to best practices. The distri-142
bution of these copyright statuses is shown in Figure 2.143

However, it is important to acknowledge that, given the144
nature of the Internet, there remains a possibility that a145
small number of images may have been uploaded by users146
without proper copyright clearance. While we reserve all147
rights to the AI-generated images produced in this research,148
we do not claim ownership of the original source images.149
Researchers can access these source images independently150
through the image URLs we have provided in our dataset.151

SFW Ensurance. Our dataset consists of images retrieved152
through the Flickr API, implementing rigorous safety pro-153
tocols with maximum safety settings (safety level=1) to en-154
sure content appropriateness [3]. For more comprehensive155
safety verification, particularly for artificially generated im-156
ages, we employed multiple state-of-the-art NSFW detec-157
tors including:158

• GantMAN NSFW Detector [20]159
• LAION’s CLIP-based NSFW Detector [38]160
• Stable Diffusion Safety Checker [35]161

Our multi-layered verification process confirmed that 100%162
of the images maintain SFW status, which can be attributed163
to both the strict initial filtering and the inherent safety164
mechanisms in the underlying VLMs and T2I generators.165

Potential Biases Analysis. To conduct a comprehensive166
bias analysis of our dataset, we employed two sophisti-167
cated detection frameworks: EasyFace [2] for human de-168

67%

26%

4%3%

Public Domain Mark Public Domain Dedication (CC0)
No known copyright restrictions United States Government Work

Figure 2. Distribution of copyright statuses for real images in
OpenSDID.

mographic analysis and Florence-2 for general object de- 169
tection. 170

We utilized the EasyFace detection framework to as- 171
sess representation across multiple demographic dimen- 172
sions. Our analysis encompassed binary gender classifi- 173
cation, seven distinct racial/ethnic categories, and nine age 174
groups spanning from infancy to elderly, providing a gran- 175
ular view of demographic representation within the dataset. 176
The face detection algorithm was applied across the entire 177
dataset, utilizing pre-trained models optimized for multi- 178
attribute recognition. Table 2 presents the results. While 179
this analysis provides valuable insights into dataset repre- 180
sentation, we acknowledge the inherent limitations of au- 181
tomated demographic classification systems, particularly 182
when dealing with edge cases and intersectional identities. 183

To complement the demographic analysis, we employed 184
Florence-2 for open-world object detection, providing in- 185
sights into the distribution of general categories within the 186
dataset. The results are visualized in Figure 3. 187

3. More Related Work Discussion 188

For training and evaluation, we use the implementation of 189
the IMDL-BenCo framework [28], which includes several 190
state-of-the-art methods for comparison. Here, we briefly 191
describe the methods included in our paper. 192

CAT-Net (Compression Artifact Tracing Network) [19] 193
is a dual-stream neural network that simultaneously pro- 194
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Dataset Type # Real # Fake Generator Adv. T2I Glo. Loc. Users # Model
UADFV [50] Face 241 252 GAN ✗ ✗ ✓ ✗ 1
DFFD [7] Face 58K 240K GAN ✗ ✓ ✓ ✗ 7
FaceForensics++ [37] Face 1K 4K GAN ✗ ✗ ✓ ✗ 1
DFDC [8] Face 19K 100K GAN ✗ ✗ ✓ ✗ 2
DeeperForensics [15] Face 50K 10K GAN ✗ ✗ ✓ ✗ 1
CNNSpot [45] General 362K 362K GAN ✗ ✓ ✗ ✗ 13
GenImage [52] General 1.3M 1.4M GAN & Diff. ✓ ✓ ✗ ✗ 8
DiffusionDB [46] General - 14M Diff. ✓ ✓ ✗ ✓ 1
Columbia [30] General 933 912 Trad. ✗ ✗ ✓ ✗ -
CASIA [9] General 7.2K 5.1K Trad. ✗ ✗ ✓ ✗ -
IMD2020 [31] General 35K 35K Trad. ✗ ✗ ✓ ✗ -
NIST16 [11] General - 564 Trad. ✗ ✗ ✓ ✗ -
Coverage [47] General 100 100 Trad. ✗ ✗ ✓ ✗ -
AutoSplice [14] General 2.3K 3.6K Diff. ✓ ✓ ✓ ✗ 1
CocoGlide [12] General – 512 Diff. ✓ ✗ ✓ ✗ 1
Dolos [42] Face 20K 105K Diff. ✓ ✓ ✓ ✗ 4
HiFi-Net [13]* General – 1M GAN & Diff. ✗ ✓ ✓ ✗ 10
GIM [5] General 300K 1.1M Diff. ✓ ✗ ✓ ✗ 3
TGIF [29] General 3.1K 75K Diff. ✓ ✗ ✓ ✗ 3
OpenSDID General 300K 450K Diff. ✓ ✓ ✓ ✓ 5

Table 1. Overview of more comprehensive image forgery datasets. ”Type” indicates the content category (Face or General). ”# Real & #
Fake” indicates the number of real and fake images. ”Generator” indicates synthesis method type (GAN, Diffusion (Diff.), or Traditional
(Trad.)). ”Adv. T2I” indicates whether advanced Text-to-Image models (e.g., Stable Diffusion) are used. ”Glo.” indicates the global image
manipulations. ”Loc.” indicates the local image manipulations. ”Users” indicates whether multiple users participate in dataset creation. ”#
Model” indicates the number of distinct models used for generation. HiFi-Net’s locally manipulated images are primarily sourced from
previous traditional manipulation datasets and facial deepfake detection datasets.
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Figure 3. Distribution of top-100 classes in the OpenSDID

cesses both RGB images and JPEG compression artifacts195
(DCT coefficients) to detect image manipulations. By lever-196
aging both visual content and compression artifacts, it is197
particularly effective at identifying forgeries, even in com-198
pressed images.199

MVSS-Net (Multi-View Multi-Scale Supervised Net-200
works) [4] is a dual-branch architecture that simultaneously201
processes both RGB domain features and noise patterns.202
The edge-supervised branch utilizes edge residual blocks,203
while the multi-scale feature learning branch analyzes tam-204
pering edge artifacts and noise views of input images.205

PSCC-Net (Progressive Spatio-Channel Correlation Net- 206
work) [25] leverages multi-scale feature learning through 207
dense cross-connections and progressive feature fusion 208
strategies. The model utilizes different sizes of convolu- 209
tions and perceptual fields to extract valuable information 210
about tampered locations, making it particularly effective at 211
detecting various types of image manipulations. 212

TruFor [12] uses a Noiseprint++ extractor to process 213
RGB images and obtain learned noise-sensitive fingerprints. 214
These fingerprints, along with the original RGB input, are 215
fed into an encoder that jointly computes features for two 216
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Category Attribute Percentage (%)

Gender Male 53.4
Female 46.6

Race/Ethnicity

White 46.5
Black 7.0
Latino Hispanic 4.4
East Asian 20.5
Southeast Asian 2.4
Indian 1.7
Middle Eastern 17.5

Age

0-2 0.4
3-9 6.4
10-19 6.7
20-29 36.4
30-39 18.6
40-49 14.2
50-59 11.6
60-69 5.0
70+ 0.7

Table 2. Demographic distribution analysis results on the OpenS-
DID dataset.

parallel decoding paths: an anomaly decoder for pixel-level217
forgery localization and a confidence decoder for detection.218

ObjectFormer [43] is a transformer-based architecture219
designed for image manipulation detection and localization.220
It takes both RGB domain and frequency domain (DCT) as221
input.222

IML-ViT [27] employs a specialized architecture that223
combines a windowed Vision Transformer (ViT) backbone,224
which alternates between windowed and global attention225
blocks to process high-resolution (1024 × 1024) input im-226
ages, with a Simple Feature Pyramid Network (SFPN) for227
multi-scale feature extraction.228

DeCLIP [39] leverages CLIP ViT-L/14 as its image en-229
coder and employs a convolutional-based architecture as its230
decoder. The CLIP image encoder is kept frozen, while only231
the mask decoder is trained for deepfake localization.232

CNNDet [45] is a standard image classifier trained on233
images generated by a single CNN generator (ProGAN).234
Through careful data augmentations, it can successfully de-235
tect AI-generated images across multiple different architec-236
tures and datasets.237

UniFD [32] detects AI-generated fake images by extract-238
ing features from a frozen CLIP-ViT model and then clas-239
sifying these features using either nearest neighbor classifi-240
cation or an MLP classifier.241

NPR [40] detects synthetic images by analyzing patterns242
in the relationships between neighboring pixels, which re-243
sult from upsampling operations in generative networks.244

GramNet [26] detects fake faces by analyzing global tex- 245
ture patterns in images, utilizing a specialized neural net- 246
work that extracts and compares statistical features from 247
real and AI-generated facial textures. 248

FreqNet [41] integrates a high-frequency representa- 249
tion module and frequency convolutional layer into a 250
lightweight CNN architecture, processing both phase and 251
amplitude spectra between FFT and IFFT operations while 252
forcing continuous focus on high-frequency information to 253
effectively detect deepfakes. 254

RINE [18] detects AI-generated images by extracting 255
features from multiple intermediate layers of CLIP’s Vision 256
Transformer. These extracted features are then used to train 257
a binary classifier that distinguishes between real and fake 258
images. 259

Methods like CAT-Net and MVSS-Net significantly en- 260
hance detection accuracy through their sophisticated in- 261
tegration of multi-domain data, including RGB images, 262
frequency domain information, and noise patterns. Ap- 263
proaches such as ObjectFormer and IML-ViT leverage 264
transformer-based architectures to achieve precise detec- 265
tion and localization capabilities. More recent innovations, 266
including DeCLIP and UniFD, harness the power of pre- 267
trained CLIP models for robust feature extraction, pair- 268
ing them with specialized decoders or classifiers to achieve 269
state-of-the-art detection performance. 270

The open-world nature of the OpenSDI introduces sev- 271
eral challenges. First, the diversity of user preferences and 272
the constant innovation in diffusion models make it diffi- 273
cult to train models that generalize well. Second, the wide 274
range of manipulation scopes, from global image synthesis 275
to local edits, requires models to be robust across different 276
scales and types of modifications. 277

MaskCLIP advances beyond existing approaches 278
through several key architectural innovations. Unlike 279
methods such as CAT-Net and MVSS-Net that primarily 280
focus on specific artifacts or dual-stream architectures, 281
MaskCLIP leverages a more comprehensive approach 282
through its SPM framework. This framework uniquely 283
combines CLIP’s semantic understanding capabilities 284
with MAE’s reconstruction power, creating a more robust 285
foundation for detection and localization tasks. 286

Though some previous studies also leverage pre-trained 287
models, such as CLIP [23, 39] and SAM [22], we integrate 288
both CLIP and MAE to achieve more generalized outcomes. 289
The efficacy of our design is substantiated through compre- 290
hensive experimental validation on the OpenSDID dataset, 291
illustrating notable enhancements over current methods in 292
terms of both detection accuracy and localization precision. 293

4. More Quantitative Results 294

In this section, in addition to assessing the efficiency and 295
the scalability of MaskCLIP and other state-of-the-art meth- 296
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ods, we focus on conducting a series of key additional ex-297
periments to examine the performance and capabilities of298
our proposed method, MaskCLIP, thoroughly across vari-299
ous domains and scenarios. These experiments aim to pro-300
vide a comprehensive understanding of MaskCLIP’s effec-301
tiveness in diverse contexts, ranging from traditional image302
manipulation detection to more advanced challenges posed303
by AI-generated content.304

The main paper focuses on studying the proposed305
OpenSDI challenge and evaluates crossing the constructed306
OpenSDI datasets (e.g., SD1.5, Flux.1). In contrast, the307
evaluation across OpenSDI and non-OpenSDI (other pub-308
lic) datasets is used to study the broader benefits of our309
OpenSDI dataset and therefore is included in the suppl. ma-310
terial (Tables 5 and 6).311
Scalability Analysis. To evaluate the data scalabil-312
ity of MaskCLIP, we conducted experiments by training313
MaskCLIP and the SOTA method TruFor on different pro-314
portions of the OpenSDID dataset. Table 3 presents the315
pixel-level F1 scores for both methods when trained on316
25%, 50%, and 100% of the data. As shown, the perfor-317
mance of MaskCLIP improves as the training data size in-318
creases from 25% to 100%, demonstrating its favorable data319
scaling properties and ability to leverage larger datasets for320
enhanced performance in OpenSDI tasks.321

Data Proportion TruFor MaskCLIP
25% 0.5294 0.5737
50% 0.6062 0.5906
100% 0.7100 0.7563

Table 3. Pixel-level F1 scores of MaskCLIP & TruFor (SOTA) on
different proportions of the OpenSDID dataset.

Cross-Dataset Evaluation on Traditional Image Forgery322
Detection and Localization (IMDL) Benchmarks. Ta-323
ble 4 presents a comprehensive comparison between our324
proposed MaskCLIP method and state-of-the-art image ma-325
nipulation detection methods across five established foren-326
sics datasets (COVERAGE, Columbia, NIST16, CASIAv1,327
and IMD2020). Following the IMDL-BenCo frame-328
work [28], we adopt Protocol-MVSS, where all models are329
trained exclusively on the CASIAv2 dataset and evaluated330
directly on other datasets without fine-tuning, enabling a331
true assessment of zero-shot domain generalization capa-332
bilities. The experimental results demonstrate the superior333
performance of our method across most evaluation scenar-334
ios. Notably, our approach achieves the highest average335
F1 score and outperforms existing methods on three out336
of five benchmarks. It is important to note that all test337
benchmarks focus on traditional image manipulation detec-338
tion tasks, specifically addressing conventional manipula-339
tion techniques such as copy-paste and splicing operations.340
The primary variations across these datasets stem from dif-341
ferences in image content domains and resolutions. But our342

OpenSDI challenge tackles a fundamentally different prob- 343
lem: detecting and localizing manipulations generated by 344
advanced AI models, particularly diffusion-based T2I gen- 345
eration methods. 346

Cross-Dataset Evaluation on Another AI-generated Im- 347
age Benchmark Dataset (GenImage). To further evaluate 348
the performance of our proposed method, we conduct ex- 349
periments on the recently introduced GenImage benchmark. 350
This benchmark allows us to compare methods trained on 351
the GenImage SDv1.4 subset with those trained on our 352
OpenSDID. The evaluation is divided into two groups: in- 353
dataset evaluation and cross-dataset zero-shot evaluation. 354

In the in-dataset evaluation, the methods are trained 355
and tested on the same distribution. In contrast, the 356
cross-dataset zero-shot evaluation testing models trained on 357
OpenSDID on GenImage dataset. Specifically, GenImage 358
uses ImageNet as its real source data, while OpenSDID is 359
composed of web-collected images, introducing a signifi- 360
cant domain gap between the two datasets. 361

The results in Table 5 demonstrate not only our method’s 362
performance but also highlight OpenSDID’s superiority in 363
terms of image diversity and realism. The table presents ac- 364
curacy metrics for various methods across different testing 365
subsets, including Midjourney, SD V1.4, SD V1.5, ADM, 366
GLIDE, Wukong, VQDM, and BigGAN, along with the 367
average accuracy. The results reveal that methods trained 368
on OpenSDID demonstrate superior performance in cross- 369
dataset zero-shot evaluation, despite the domain gap. This 370
suggests that OpenSDID provides a more challenging and 371
diverse training set, enhancing model generalization ca- 372
pabilities. Our proposed method, MaskCLIP, achieves a 373
competitive average accuracy of 77.4%, surpassing several 374
state-of-the-art methods in the cross-dataset setting. 375

Zero-shot Evaluation on OpenSDID with Different Pre- 376
trained Dataset. We conduct comprehensive zero-shot 377
evaluations to assess the generalization capability of various 378
state-of-the-art forgery detection methods across different 379
training settings. Table 6 presents the pixel-level localiza- 380
tion performance using IoU and F1 metrics on OpenSDID 381
test sets. We evaluate three representative methods: Tru- 382
For [12], DeCLIP [39], and IML-ViT [27], each tested with 383
their officially released pretrained weights and trained on 384
our OpenSDID. 385

Several key observations emerge: First, when using orig- 386
inal pretrained weights, all methods show limited gener- 387
alization to T2I diffusion-generated images, with perfor- 388
mance declining significantly compared to their reported 389
results on traditional forgery datasets. This indicates that 390
existing methods trained on traditional manipulation data 391
struggle to transfer to diffusion-based forgeries. Second, 392
retraining these methods on OpenSDID substantially im- 393
proves their performance, particularly for SD1.5 and SD2.1 394
models. For instance, TruFor’s IoU improves from 0.0742 395
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Method COVERAGE Columbia NIST16 CASIAv1 IMD2020 Average
Mantra-Net [48] 0.090 0.243 0.104 0.125 0.055 0.123
MVSS-Net [4] 0.259 0.386 0.246 0.534 0.279 0.341
CAT-Net [19] 0.296 0.584 0.269 0.581 0.273 0.401
ObjectFormer [43] 0.294 0.336 0.173 0.429 0.173 0.281
PSCC-Net [25] 0.231 0.604 0.214 0.378 0.235 0.333
NCL-IML [51] 0.225 0.446 0.260 0.502 0.237 0.334
Trufor [12] 0.419 0.865 0.324 0.721 0.322 0.530
IML-ViT [27] 0.435 0.780 0.331 0.721 0.327 0.519
MaskCLIP 0.451 0.848 0.342 0.725 0.319 0.537

Table 4. Pixel-level F1 (localization) performance across traditional image forensics benchmark datasets. All methods are trained on
CASIAv2 and do the cross-dataset evaluation on these benchmarks.

Method Testing Subset AvgMidjourney SD V1.4 SD V1.5 ADM GLIDE Wukong VQDM BigGAN Acc.(%)
ResNet-50† 54.9 99.9 99.7 53.5 61.9 98.2 56.6 52.0 72.1
DeiT-S† 55.6 99.9 99.8 49.8 58.1 98.9 56.9 53.5 71.6
Swin-T† 62.1 99.9 99.8 49.8 67.6 99.1 62.3 57.6 74.8
CNNDet† 52.8 96.3 95.9 50.1 39.8 78.6 53.4 46.8 64.2
Spec† 52.0 99.4 99.2 49.7 49.8 94.8 55.6 49.8 68.8
F3Net† 50.1 99.9 99.9 49.9 50.0 99.9 49.9 49.9 68.7
GramNet† 54.2 99.2 99.1 50.3 54.6 98.9 50.8 51.7 69.9

PSCC-Net [25] 65.0 94.9 95.3 55.0 56.2 79.5 53.6 59.4 69.9
MVSS-Net [4] 66.7 84.4 85.2 60.3 62.9 69.8 67.8 70.0 70.9
TruFor [12] 55.6 46.0 45.0 66.0 60.8 51.0 70.7 70.4 58.2
DeCLIP [39] 56.3 79.8 79.0 72.4 75.5 79.9 77.5 81.3 75.2
MaskCLIP 51.5 95.0 96.3 70.6 75.5 73.8 78.3 77.8 77.4

Table 5. Image-level (detection accuracy) performance on the GenImage benchmark dataset [52]. The methods are divided into two groups
based on their training data: the first group (marked with †) is trained on GenImage SDv1.4, while the second group (no marks) is trained
on OpenSDID.

to 0.6342 on SD1.5 after retraining. These results highlight396
both the challenge and importance of developing robust de-397
tection methods specifically designed for diffusion-based398
forgeries, as traditional datasets show limited effectiveness399
in this emerging threat landscape.400

More Robustness Analysis. Figure 4 shows the perfor-401
mance comparison of different methods under image degra-402
dation conditions, specifically Gaussian blur and JPEG403
compression, across three datasets (SD2.1, SDXL, and404
Flux.1). Under varying levels of Gaussian blur (3-23)405
and JPEG compression quality (60-100), MaskCLIP consis-406
tently demonstrates superior robustness compared to other407
approaches. Particularly notable is MaskCLIP’s perfor-408
mance on the SD2.1 dataset, where it maintains strong409
F1 scores even as image quality degrades. While perfor-410
mance naturally decreases with more severe degradation,411
MaskCLIP exhibits more graceful degradation compared412
to competing methods, maintaining its lead across differ-413
ent datasets and degradation types. This consistent perfor-414

mance advantage highlights the robust nature of our ap- 415
proach in handling various real-world image quality chal- 416
lenges. 417

Comprehensive Analysis of Pretrained Model Combina- 418
tions. Since our proposed Synergizing Pretrained Mod- 419
els (SPM) learning scheme leverages multiple pretrained 420
models, with MaskCLIP serving as just one implementa- 421
tion example, we conducted extensive experiments with 422
various model combinations. We explored different CLIP 423
variants (ViT-B/32, OpenCLIP) and alternative pixel-wise 424
encoders to thoroughly evaluate the SPM approach. Ta- 425
ble 7 presents a systematic comparison of different en- 426
coder combinations. The OpenAI ViT-B/32 paired with 427
MAE-base achieves F1 scores of 0.7227 and 0.4472 on 428
SD1.5 and SD3 datasets, respectively. Scaling up to Open- 429
CLIP ViT-L/14 yields improved performance, demonstrat- 430
ing the advantages of a larger vision transformer architec- 431
ture. Notably, substituting MAE-base with Dinov2-base re- 432
sults in decreased performance (F1 scores of 0.6278 and 433
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SD1.5 SD2.1 SDXL SD3 Flux.1 AVG
Method Data IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1
TruFor [12] Trufor† 0.0742 0.1073 0.0770 0.1115 0.0704 0.1035 0.0996 0.1424 0.1019 0.1464 0.0846 0.1222
TruFor [12] OpenSDID 0.6342 0.7100 0.5467 0.6188 0.2655 0.3185 0.3229 0.3852 0.0760 0.0970 0.3691 0.4259
DeCLIP [39] Dolos-LDM 0.0138 0.0218 0.0131 0.0210 0.0089 0.0144 0.0145 0.0230 0.0070 0.0115 0.0115 0.0183
DeCLIP [39] Dolos-Lama 0.0093 0.0151 0.0098 0.0158 0.0057 0.0098 0.0155 0.0251 0.0048 0.0085 0.0090 0.0149
DeCLIP [39] Dolos-Pluralistic 0.0145 0.0233 0.0154 0.0245 0.0064 0.0108 0.0182 0.0292 0.0069 0.0116 0.0123 0.0199
DeCLIP [39] Dolos-Repaint 0.0254 0.0377 0.0221 0.0342 0.0184 0.0284 0.0344 0.0522 0.0162 0.0253 0.0233 0.0356
DeCLIP [39] OpenSDID 0.3718 0.4344 0.3569 0.4187 0.1459 0.1822 0.2734 0.3344 0.1121 0.1429 0.2520 0.3025
IML-ViT [27] Trufor† 0.0806 0.1143 0.0825 0.1165 0.0746 0.1066 0.1279 0.1750 0.1295 0.1768 0.0990 0.1378
IML-ViT [27] CASIAv2 0.0248 0.0384 0.0228 0.0366 0.0213 0.0337 0.0266 0.0418 0.0290 0.0460 0.0249 0.0393
IML-ViT [27] OpenSDID 0.6651 0.7362 0.4479 0.5063 0.2149 0.2597 0.2363 0.2835 0.0611 0.0791 0.3251 0.3730
MaskCLIP CASIAv2 0.0312 0.0465 0.0289 0.0442 0.0256 0.0398 0.0334 0.0502 0.0358 0.0532 0.0310 0.0468
MaskCLIP OpenSDID 0.6712 0.7563 0.5550 0.6289 0.3098 0.3700 0.4375 0.5121 0.1622 0.2034 0.4271 0.4941

Table 6. Pixel-level (localization) performance on OpenSDID. Test SOTA methods pretrained weights on various training data and do zero-
shot testing on the OpenSDID’s test sets. Trufor† indicates training on a combined dataset including CASIA v2, FantasticReality [17],
IMD2020, and tampered versions of COCO and RAISE datasets [19], which is the training setting of Trufor.

Method Pixel-level F1
Encoder1 Encoder2 Params. SD1.5 SD3
OA ViT-B/32 MAE-base 96M 0.7227 0.4472
OC ViT-L/14 MAE-base 114M 0.7363 0.4908
OA ViT-L/14 Dinov2-base 114M 0.6278 0.3521
OA ViT-L/14 MAE-base 114M 0.7563 0.3700
OA ViT-L/14 SAM-base 126M 0.7873 0.5773

Table 7. Performance comparison of different encoder combina-
tions. We evaluate various pretrained models as Encoder1 (CLIP
variants) and Encoder2 (pixel-wise encode models). OA and OC
denote OpenAI and OpenCLIP respectively. The results show
pixel-level F1 scores on both SD1.5 and SD3 datasets. Params.
indicates the trainable parameters of the model, where we only
keep the CLIP model frozen.

0.3521), suggesting that MAE’s self-supervised pretraining434
approach is more effective for our specific task. The optimal435
performance is achieved by combining OpenAI ViT-L/14436
with SAM-base, reaching F1 scores of 0.7873 and 0.5773.437
This superior performance indicates that SAM’s segment-438
focused pretraining provides particularly valuable features439
for our segmentation task, albeit at the cost of increased440
computational overhead during both training and inference.441
These comprehensive experiments underscore two key find-442
ings: (1) the critical importance of selecting appropriate443
pretrained weights, and (2) the significant performance ben-444
efits that can be achieved through larger model architectures445
and segment-aware pretraining strategies.446

Analysis of Loss Function Components. The loss func-447
tion in MaskCLIP follows established approaches from pre-448
vious works [4, 12, 27], incorporating three components:449
cross-entropy loss (LCE), binary cross-entropy loss (LBCE),450
and edge-weighted loss (LEDG). While we employ a simple451
balanced weighting scheme for these loss terms, it is crucial452
to analyze the impact of each component in our objective453
function. Table 8 presents experimental results with various454

Loss Components Pixel-level F1
LCE LBCE LEDG SD1.5 SD3
1.0 2.0 1.0 0.7575 0.3573
2.0 1.0 1.0 0.7620 0.3373
1.0 1.0 0.0 0.7299 0.3108
1.0 1.0 1.0 0.7563 0.3700

Table 8. Ablation study on three loss function components. LCE

denotes cross-entropy loss, LBCE represents binary cross-entropy
loss, and LEDG is the edge-weighted loss.

Method SD1.5 SD2.1 SDXL SD3 Flux.1 AVG
TruFor [12] 0.728±0.032 0.601±0.029 0.289±0.059 0.330±0.018 0.071±0.018 0.404±0.031

MaskCLIP 0.765±0.008 0.628±0.021 0.381±0.013 0.492±0.019 0.188±0.009 0.471±0.014

Table 9. Performance of TruFor and MaskCLIP with multiple runs
on OpenSDID.

weight combinations of the three loss terms. Our findings 455
underscore the importance of maintaining a balanced objec- 456
tive function that appropriately weights binary classification 457
and edge preservation. 458
Multiple Runs Analysis. Although most previous works 459
don’t perform multiple runs to study robustness, we con- 460
ducted three independent training runs for both MaskCLIP 461
and the baseline TruFor method. As shown in Table 9, 462
MaskCLIP exhibits notably smaller standard deviations 463
across all subsets, indicating more stable and reliable per- 464
formance compared to the baseline. 465

5. More Qualitative Results 466

To provide a comprehensive evaluation of our method 467
across different Diffusion models, we present additional 468
qualitative results on various subsets of the OpenSDID 469
dataset. Figures 5, 6, 7, 8, and 9 demonstrate our approach’s 470
performance on images generated by SD1.5, SD2.1, SD3, 471
SDXL, and Flux.1 models respectively. 472

The results showcase our method’s effectiveness across 473
various generator models. For the Flux.1 subset (Figure 9), 474
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Figure 4. Robustness evaluation of different SOTA methods un-
der image degradation on OpenSDID. It compares performance
across varying levels of Gaussian Blur (left) and JPEG Compres-
sion (right).

our method exhibits strong zero-shot performance. How-475
ever, in the interest of transparency, we also present several476
failure cases (Figure 10) that highlight our method’s cur-477
rent limitations. These challenging cases typically involve478
highly photorealistic images or compositions with unique479
elements that closely resemble natural photographs. These480
observations highlight the significant advancement of cur-481
rent AI image generation technology. This rapid develop-482
ment poses higher demands on image discrimination tech-483
niques and indicates that future research needs to develop484
more robust detection methods.485

6. Samples of OpenSDID486

Figures 11, Figures 12, Figures 13, Figures 14, and Fig-487
ures 15 present more samples of our datasets.488
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Input Image Groundtruth MVSS-Net CAT-Net PSCC-Net ObjectFormer TruFor DeCLIP IML-ViT MaskCLIP

Figure 5. Qualitative results on the OpenSDID SD1.5 testset.
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Input Image Groundtruth MVSS-Net CAT-Net PSCC-Net ObjectFormer TruFor DeCLIP IML-ViT MaskCLIP

Figure 6. Qualitative results on the OpenSDID SD2.1 test set.
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Input Image Groundtruth MVSS-Net CAT-Net PSCC-Net ObjectFormer TruFor DeCLIP IML-ViT MaskCLIP

Figure 7. Qualitative results on the OpenSDID SD3 test set.
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Input Image Groundtruth MVSS-Net CAT-Net PSCC-Net ObjectFormer TruFor DeCLIP IML-ViT MaskCLIP

Figure 8. Qualitative results on the OpenSDID SDXL test set.
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Input Image Groundtruth MVSS-Net CAT-Net PSCC-Net ObjectFormer TruFor DeCLIP IML-ViT MaskCLIP

Figure 9. Qualitative results on the OpenSDID Flux.1 test set.
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Input Image Groundtruth MVSS-Net CAT-Net PSCC-Net ObjectFormer TruFor DeCLIP IML-ViT MaskCLIP

Figure 10. Some Fail Cases on the OpenSDID Flux.1 test set.
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Figure 11. Sample images generated using the Stable Diffusion v1.5 (SD1.5) model.
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Figure 12. Sample images generated using the Stable Diffusion v2.1 (SD2.1) model.
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Figure 13. Sample images generated using the Stable Diffusion v3 model.
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Figure 14. Sample images generated using the Stable Diffusion XL (SDXL) model.
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Figure 15. Sample images generated using the Flux.1 model.
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