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A. Experimental details

A.1. Dataset details

The Stanford Action dataset [59] is available from its official website, while the Stanford Location and Stanford Mood dataset
[23] can be downloaded from its official GitHub page. We generate a text file containing filenames and ground-truth labels
for each dataset. In the smaller Stanford Location and Stanford Mood dataset, we retain all filenames present in Stanford
Action and use a special symbol to indicate missing images. All available images from these datasets are used. For Clevr-4,
the datasets [51] constructed using the CLEVR environment [17] are available on the authors’ GitHub page, and we use them
without additional preprocessing, utilizing only the training split for our method. We provide the dataset statistics in Tab. 6,
complete class names in Tab. 7, evaluation set sizes (overlap across all context) in Tab. 8.

Table 6. Dataset statistics used in our experiments. We randomly split the classes, assigning half as known (YL) and the other half as novel
(YN ), sampling 16 images per class for the labeled set (DL) and using the remaining images for the unlabeled set (DU ) in each context.
This setup reflects the practical scenario of ad-hoc categorization, where obtaining extensive labels for diverse contexts is challenging.
Please note that our results are not directly comparable to prior work, which often uses thousands of labeled samples.

a) Stanford Action Location Mood

Examples drinking,
phoning

market,
residential

focused,
relaxed

|YL| 20 5 2
|YN | 20 5 2

|DL| 320 80 32
|DU | 9.2K 920 968

b) Clevr-4 Texture Color Shape Count

Examples metal,
rubber

red,
blue

torus,
cube

1, 2

|YL| 5 5 5 5
|YN | 5 5 5 5

|DL| 80 80 80 80
|DU | 8.3K 8.3K 8.3K 8.3K

Table 7. Class names for each dataset. Classes in bold represent the known classes for the respective datasets.

Dataset Class Names

Stanford Action applauding, brushing teeth, climbing, cutting trees, drinking, fishing, fixing a car, holding an umbrella,
looking through a microscope, phoning, playing violin, pushing a cart, riding a bike, rowing a boat,
shooting an arrow, taking photos, throwing frisby, walking the dog, watching TV, writing on a board,
blowing bubbles, cleaning the floor, cooking, cutting vegetables, feeding a horse, fixing a bike, gardening,
jumping, looking through a telescope, playing guitar, pouring liquid, reading, riding a horse, running, smoking,
texting message, using a computer, washing dishes, waving hands, writing on a book

Stanford Location educational institution, natural environment, office or workplace, public event or gathering, residential
area, restaurant or dining area, sports facility, store or market, transportation hub, urban area or city street

Stanford Mood adventurous, joyful, focused, relaxed

Clevr-4 Texture rubber, metal, checkered, emojis, wave, brick, star, circles, zigzag, chessboard

Clevr-4 Color gray, red, blue, green, brown, purple, cyan, yellow, pink, orange

Clevr-4 Shape cube, sphere, monkey, cone, torus, star, teapot, diamond, gear, cylinder

Clevr-4 Count 7, 10, 1, 3, 5, 2, 4, 6, 8, 9

Table 8. Omni accuracy evaluation set sizes for each dataset. To compute the Omni accuracy, we gather all images labeled across all
contexts for the evaluation set. For instance, this table shows that only 8 images overlap between the known image sets of the Action,
Location, and Mood contexts in the Stanford dataset.

Known Novel Overall

Stanford 8 17 128
Clevr-4 583 496 8,424



A.2. Training of GCD and OAK
We begin each experiment using the exact training recipe from GCD [49]. However, we find the default hyperparameters
lead to ineffective and unstable training due to the reduced number of labeled examples, the overall dataset size (Stanford
Location and Mood), and out-of-distribution settings (Clevr-4). To address this, we perform hyperparameter tuning directly
on the unlabeled images in the training set for each dataset, based on the training loss curves and clustering quality based on
the silhouette score. The silhouette score evaluates the quality of clustering by measuring how similar data points are within
the same cluster compared to points in other clusters, which is an effective estimator of how well our model understands
current context and discovery open categories. A separate validation set is also suboptimal for this task, as category discovery
relies on the grouping of similar images, making dataset size critical. The hyperparameters used are detailed in Tab. 9.

Table 9. Hyperparameters for training OAK. on Stanford and Clevr-4. We start from GCD training recipe and perform unsupervised
hyperparameter tuning based on training loss curves and clustering quality. CFJ = [RandomCrop, RandomHorizontalFlip, ColorJitter].

Hyperparameter
Stanford Clevr-4

Action Location Mood Texture Color Shape Count

batch size 128 128 128 128 128 128 128
total epochs 50 50 50 50 50 50 50
learning rate 0.1 0.01 0.1 0.01 0.1 0.1 0.01
learning rate scheduler Cosine Cosine Cosine Cosine Cosine Cosine Cosine
min learning rate multiplier 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
optimizer SGD SGD SGD SGD SGD SGD SGD
momentum 0.9 0.9 0.9 0.9 0.9 0.9 0.9
weight decay 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5
context tokens length 50 50 50 50 50 50 50
`self-con: temperature 1.0 1.0 1.0 1.0 1.0 1.0 1.0
`self-con: n views 2 2 2 2 2 2 2
`self-con: augmentation CFJ CFJ CFJ CFJ CFJ CFJ CFJ
`sup-con: � (loss weight) 0.35 0.35 0.35 0.35 0.35 0.35 0.35
`text-reg: �text-reg (labeled, unlabeled) (0.1, 0.01) (1.0,1.0) (1.0, 0.1) (1.0,1.0) (0.1, 0.1) (0.1, 1.0) (1.0, 1.0)
SS-KMeans: n init 10 10 10 10 10 10 10
SS-KMeans: tolerance 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
SS-KMeans: max iterations 200 200 200 200 200 200 200

Assumptions beyond GCD. We remark that OAK makes no additional distributional assumptions beyond GCD. Both
methods assume the number of novel classes is known, though they are capable of estimating it. The only difference is access
to a pool of class names, which can be generated by an LLM at minimal cost.

Class names for GCD. Class names are assigned via Hungarian matching between predicted cluster IDs and true labels
across all images, based on one-hot label distance for both GCD and Ours. This is only for visualization (Figs. 4 and 5), as
true labels are unavailable in practice. Instead, our cluster names (Tab. 5) are inferred by matching cluster centers of image
embeddings with text embeddings of class names via CLIP using cosine similarity.

A.3. LLM prompt for CLIP-ZS and OAK
To adapt CLIP zero-shot methods for predicting novel classes, we generate potential novel class names using the publicly
available ChatGPT. We provide the known class names, the number of novel classes required, and a specific prompt to
ChatGPT, then use the generated responses as the discovered novel class names for zero-shot classification. OAK’s text
regularization algorithm and naming clustering algorithm for the unlabeled images follows a similar pipeline, with the key
difference being that we request a significantly (up to 4 times) larger vocabulary from ChatGPT to construct our constrained
vocabulary set. Our prompt used is detailed below:

I have a dataset of images from the following classes: [KNOWN CLASSES]. What are the most possible classes

that will also be included in this dataset? Give me [NUMBER OF NOVEL CLASSES] class names, only return

class names separated by commas. Include quotation marks for each one.



B. Additional saliency maps

a) Success cases Action Location Mood

Image GCD OAK (ours) GCD OAK (ours) GCD OAK (ours)

reading writing on a book transportation hub workplace focused focused

cutting trees cutting trees natural natural focused focused

rowing a boat rowing a boat natural natural focused adventurous

b) Failure cases Action Location Mood

Image GCD OAK (ours) GCD OAK (ours) GCD OAK (ours)

cutting trees cleaning the floor natural natural focused focused

phoning phoning transportation urban (natural) joyful relaxed

washing dishes cooking dining area dining area joyful relaxed (focused)

Figure 8. Additional saliency maps on the Stanford dataset demonstrate that OAK makes reasonable predictions, focusing on the
relevant regions for different contexts. We select three samples correctly predicted by OAK across all contexts and three that fail. In the
failure cases, OAK 1) ignores the trees with indirect interaction, mistaking the red saw for a cleaning tool; 2) focuses on a lamp and a
phone in a natural beach scene, mistaking it for urban; and 3) focuses on the relaxed cat held by a focused person closer to the camera.



a) Success cases Texture Color Shape Count

Image GCD OAK (ours) GCD OAK (ours) GCD OAK (ours) GCD OAK (ours)

chessboard metal purple purple cone cone 5 6

checkered chessboard orange orange cube cube 9 8

chessboard wave purple purple star star 2 3

b) Failure cases Texture Color Shape Count

Image GCD OAK (ours) GCD OAK (ours) GCD OAK (ours) GCD OAK (ours)

star star (brick) star star brown brown 2 3

checkered checkered blue blue sphere sphere (teapot) 1 1

chessboard metal (star) purple purple cone cone 5 6 (8)

Figure 9. Additional saliency maps on the Clevr-4 dataset, showing that OAK makes sensible predictions by focusing on relevant
regions across various contexts, using the same setup. In the failure cases, OAK 1) struggles to identify black brick patterns on a dark
brown object, mistaking the star shape for a star texture; 2) fails to recognize a teapot at a challenging angle, mistaking it for a sphere; and
3) has difficulty with smaller objects, leading to undercounting. Best viewed zoomed in.

We present additional saliency maps for both the success cases and failure cases on the Stanford datasets and Clevr-4
datasets in Fig. 8 and Fig. 9 respectively. OAK effectively switches between contexts, appropriately focusing on different
aspects (regions) of the same image based on the context. Even in failure cases, the errors are easily interpretable and often
arise from inherent ambiguities within the image, such as focusing on manufactured objects like a lamp and a phone, leading
to mispredicting nature as urban, as illustrated in the second failure example in the Stanford results.



C. Full list of cluster names
Following Tab. 5, we present the class names associated with every known or novel visual clusters for Stanford Action,
Stanford Location, Stanford Mood, Clevr-4 Texture, Clevr-4 Color, Clevr-4 Shape and Clevr-4 Count, in Tabs. 10 to 16.
OAK identifies novel clusters accurately, as shown by predicted names like blowing bubbles in Stanford Action. Failure
cases are also fairly reasonable, such as predicting waving hands as clapping.

Table 10. Class names associated with every visual cluster
from Stanford Action. OAK’s predictions largely align with the
ground-truth labels provided by humans, often differing only in
synonymous terms, with a few exceptions, such as the texting mes-

sage cluster being predicted as shaking hands. Known classes are
marked in bold.

GT Label Prediction

applauding applauding
brushing teeth brushing teeth
climbing rock climbing
cutting trees cutting trees
drinking drinking
fishing catching a fish
fixing a car fixing a car
holding an umbrella holding an umbrella
looking through a microscope looking in a microscope
phoning talking on a phone
playing violin playing violin
pushing a cart pushing a cart
riding a bike riding a bike
rowing a boat rowing a boat
shooting an arrow practicing archery
taking photos taking photos
throwing frisby fishing
walking the dog walking the dog
watching TV watching TV
writing on a board writing on a board
blowing bubbles blowing bubbles
cleaning the floor mopping the floor
cooking preparing a meal
cutting vegetables climbing
feeding a horse petting a horse
fixing a bike fixing a bike
gardening weeding a garden
jumping dancing
looking through a telescope looking through a microscope
playing guitar strumming a guitar
pouring liquid carrying a box
reading reading a book
riding a horse running
running jogging
smoking smoking
texting message shaking hands
using a computer texting
washing dishes washing dishes
waving hands clapping
writing on a book writing a letter

Table 11. Class names associated with every visual cluster from
Stanford Location. OAK’s predictions often surpass the ground-
truth labels in precision, capturing finer semantic meanings with
greater granularity. We verify the correctness of these finer predic-
tions through manual visual inspection. For example, many educa-

tional institutions in our dataset are specifically science labs, and
many sports facilities are rock climbing walls. Known classes are
marked in bold.

GT Label Prediction

educational institution science lab
natural environment natural environment
office or workplace office or workplace
public event or gathering public event or gathering
residential area residential area
restaurant or dining area commercial kitchen
sports facility rock climbing wall
store or market road or highway
transportation hub language school
urban area or city street suburban street

Table 12. Class names associated with every visual cluster from
Stanford Mood. Known classes are marked in bold.

GT Label Prediction

adventurous adventurous
joyful exhilarated
focused explorative
relaxed admiring



Table 13. Class names associated with every visual cluster from
Clevr-4 Texture. Known classes are marked in bold.

GT Label Prediction

checkered checkered
emojis emojis
metal metal
rubber rubber
wave wave
brick abstract wave
chessboard chrome
circles checkerboard
star pixelated
zigzag wavy lines

Table 14. Class names associated with every visual cluster from
Clevr-4 Color. Known classes are marked in bold.

GT Label Prediction

blue indigo blue
brown warm brown
gray gray
green kelly green
red scarlet red
cyan turquoise
orange orange
pink pink
purple lilac purple
yellow mustard yellow

Table 15. Class names associated with every visual cluster from
Clevr-4 Shape. Known classes are marked in bold.

GT Label Prediction

cone cone
cube cube
monkey monkey
sphere sphere
torus torus
star star shape
cylinder cylinder
diamond diamond shape
gear gear
teapot teapot

Table 16. Class names associated with every visual cluster from
Clevr-4 Count. Known classes are marked in bold.

GT Label Prediction

1 23
3 3
5 5
7 7
10 10
2 24
4 4
6 6
8 19
9 17



D. Additional results
D.1. Results on standard benchmarks
OAK also enhances GCD on standard single-context benchmarks by leveraging CLIP’s semantic knowledge and context-
aware attention. Tab. 17 shows full-shot results on CUB-200 and Stanford Cars using the CLIP ViT-B/16 backbone, demon-
strating OAK’s superiority in novel class discovery. Moreover, OAK is compatible with state-of-the-art GCD methods and
can be further improved by integrating them.

Table 17. Results on standard GCD benchmarks.

CUB-200 Stanford Cars

Old New All Old New All

CLIP-ZS 69.4 - - 81.4 - -
CLIP-ZS + LLM vocab 46.4 44.0 44.8 54.6 47.4 49.7
CLIP-ZS + GT vocab 55.6 56.1 55.9 70.0 61.1 64.0

SS-KMeans 46.2 46.6 46.5 51.1 43.5 46.0
GCD 60.4 60.8 60.7 75.4 56.6 62.7

OAK (ours) 59.6 62.4 61.5 71.0 63.4 65.9

D.2. Results on abstract textures
We conduct experiments on the DTD [7] dataset, which contains images of abstract textures. Its 47 texture classes are split
evenly into known and novel classes, using 20 labeled images per class. Tab. 18 shows that OAK outperforms the baselines,
and Fig. 10 shows that OAK successfully discovers abstract classes such as bubbly.

Table 18. Results on abstract textures.

Old New All

CLIP-ZS 53.3 - -
CLIP-ZS + LLM vocab 34.0 43.7 40.4
GCD 55.4 61.7 59.6
OAK (ours) 56.7 65.0 62.1

Known: bumpy Novel: bubbly

Figure 10. Example of known and novel classes in the DTD dataset.



E. Additional analyses
E.1. Ablation study on Clevr-4
Following Tab. 4, we present ablation study on the method components on the Clevr-4 datasets in Tab. 19. Consistent with
the proper observation, both context-aware attention and text-guided regularization enhance performance. While CLIP-ZS
did not provide much benefit for synthetic images with abstract contexts, leveraging text semantics improved the overall
accuracy of the baseline GCD, particularly for higher-level contexts like Texture and Count.

Table 19. Ablation study on Clevr-4 shows consistent results as those on the Stanford datasets, as shown in Tab. 4.

Context-aware
attention

Text-guided
regularization

Known Novel Overall

Texture Color Shape Count Omni Texture Color Shape Count Omni Texture Color Shape Count Omni

- - 73.4 98.3 99.0 41.9 35.5 43.6 94.9 99.2 42.3 15.7 58.2 96.6 99.1 42.1 22.6
X - 35.0 99.5 98.9 39.2 8.2 22.9 90.0 98.4 34.5 9.3 28.8 94.7 98.7 36.9 7.6
- X 74.8 98.1 99.4 52.3 53.9 46.0 90.2 99.4 34.4 10.9 60.1 94.1 99.4 43.3 27.9
X X 82.3 100.0 99.9 45.0 40.5 47.8 100.0 99.8 43.7 16.5 64.6 100.0 99.8 44.4 28.5

E.2. Multi-seed results
We test the sensitivity of the 16 labeled images used for our final performance on the Stanford and CLEVR-4 datasets,
applying five different random seeds for image selection in Tab. 20 and Tab. 21, respectively. OAK consistently outperforms
the baselines with statistical significance, achieving substantial margins beyond the standard deviations.

Table 20. Sensitivity analysis on the selection of 16 labeled images in the Stanford datasets. We use five different random seeds for
image selection, train GCD and OAK accordingly, and report the mean and standard deviation across the five runs.

Known Novel Overall

Method Action Location Mood Omni Action Location Mood Omni Action Location Mood Omni

SS-KMeans 63.0 62.8 25.9 12.5 57.8 67.9 78.3 23.5 60.3 65.1 52.9 22.6
±4.2 ±7.1 ±0.6 ±0.0 ±3.5 ±4.7 ±0.2 ±4.2 ±1.5 ±3.8 ±0.4 ±4.1

GCD 87.8 78.7 46.2 27.5 62.1 78.4 46.1 17.6 74.6 78.6 46.1 45.3
±6.7 ±5.4 ±20.5 ±28.5 ±7.8 ±1.8 ±12.6 ±20.8 ±6.9 ±2.9 ±6.5 ±10.1

OAK (ours) 89.8 84.2 59.6 5.0 79.0 80.3 77.4 37.6 84.2 82.4 68.6 49.7
±0.4 ±1.5 ±12.3 ±6.8 ±0.3 ±1.5 ±12.7 ±14.2 ±1.7 ±1.1 ±11.0 ±14.9

Table 21. Sensitivity analysis on the selection of 16 labeled images in the Clevr-4 datasets, following the same settings in Tab. 20.

Known Novel Overall

Method Texture Color Shape Count Omni Texture Color Shape Count Omni Texture Color Shape Count Omni

SS-KMeans 13.0 11.3 79.3 24.2 0.2 13.6 12.1 78.7 15.3 0.2 13.3 11.7 79.0 19.7 0.1
±0.1 ±0.8 ±8.2 ±0.4 ±0.1 ±0.3 ±0.8 ±6.3 ±0.5 ±0.3 ±0.1 ±0.0 ±1.9 ±0.1 ±0.02

GCD 47.4 76.3 98.0 43.0 32.0 37.1 64.9 99.1 33.5 10.0 42.1 70.5 98.5 38.2 18.4
±27.4 ±25.2 ±3.3 ±8.2 ±11.4 ±9.2 ±32.9 ±1.1 ±6.0 ±4.8 ±17.9 ±27.4 ±1.7 ±6.5 ±6.7

OAK (ours) 78.8 99.5 100.0 45.0 44.5 47.0 99.8 99.8 39.2 14.5 62.6 99.6 99.9 42.1 26.7
±4.0 ±1.0 ±0.0 ±3.7 ±4.1 ±2.4 ±0.3 ±0.03 ±1.6 ±1.9 ±2.5 ±0.5 ±0.03 ±1.2 ±1.9



E.3. Class names from large datasets
Ad-hoc category discovery is an open-ended problem covering diverse custom contexts, making LLMs a natural choice since
large datasets for these contexts are generally unavailable. Nevertheless, we compare our class names with those from the
Kinetics [4] dataset, which contains 700 action classes. Tab. 22 shows that both produce similar novel class names when the
candidate set is sufficiently large, such as sweeping floor vs. cleaning the floor.

Table 22. Comparison of predicted class names using candidate sets generated by GPT and those retrieved from Kinetics-700.

GT Label From ChatGPT-4o From Kinetics-700

blowing bubbles blowing bubbles blowing bubble gum
cleaning the floor mopping the floor sweeping floor
cooking preparing a meal cooking egg
cutting vegetables climbing cutting apple
feeding a horse petting a horse petting horse
fixing a bike fixing a bike fixing bicycle
gardening weeding a garden digging
jumping dancing high jump
looking through a telescope looking through a microscope using a microscope
playing guitar strumming a guitar playing guitar
pouring liquid carrying a box pouring milk
reading reading a book reading book
riding a horse running riding or walking with horse
running jogging jogging
smoking smoking smoking
texting message shaking hands texting
using a computer texting assembling computer
washing dishes washing dishes washing dishes
waving hands clapping waving hand
writing on a book writing a letter reading book

E.4. Additional analysis on Count
We plot the mean error of OAK and CLIP against the number of objects in an image from the Clevr-4 dataset. For CLIP,
we use the true names of novel classes, while OAK predicts them by matching cluster embeddings. Fig. 11 shows that CLIP
struggles as object count increases, whereas OAK maintains stable performance. This highlights OAK ’s ability to infer object
counts through visual clustering, which is difficult to learn purely from semantics. Nonetheless, specialized object-counting
models may still be needed for higher object counts (>10) beyond those in Clevr-4.

Figure 11. Mean error of OAK and CLIP versus the number of objects in an image.

E.5. t-SNE visualizations
We present t-SNE plots of the feature spaces of CLIP and OAK on Stanford Action, Stanford Location, Stanford Mood,
Clevr-4 Texture, Clevr-4 Color, Clevr-4 Shape, and Clevr-4 Count in the following figures. The results show that OAK
refines CLIP features into well-clustered representations aligned with each context. Notably, OAK performs well in contexts
CLIP does not inherently capture, such as Stanford Location. For out-of-distribution (OOD) images like Clevr-4 Shape and
Clevr-4 Color, OAK achieves near-perfect clustering. Even in cases that are both OOD and outside CLIP’s primary focus,
such as Clevr-4 Texture and Clevr-4 Count, OAK forms reasonably coherent clusters, demonstrating its effectiveness.



(a) CLIP (b) OAK (ours)

Figure 12. t-SNE plot of CLIP and OAK’s feature space on Stanford Action.

(a) CLIP (b) OAK (ours)

Figure 13. t-SNE plot of CLIP and OAK’s feature space on Stanford Location.



(a) CLIP (b) OAK (ours)

Figure 14. t-SNE plot of CLIP and OAK’s feature space on Stanford Mood.

(a) CLIP (b) OAK (ours)

Figure 15. t-SNE plot of CLIP and OAK’s feature space on CLEVR4 Texture.



(a) CLIP (b) OAK (ours)
Figure 16. t-SNE plot of CLIP and OAK’s feature space on CLEVR4 Shape.

(a) CLIP (b) OAK (ours)
Figure 17. t-SNE plot of CLIP and OAK’s feature space on CLEVR4 Color.



(a) CLIP (b) OAK (ours)
Figure 18. t-SNE plot of CLIP and OAK’s feature space on CLEVR4 Count.
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