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Figure 1. Framework of OpticalNet. Drawing an analogy to modular construction, where small units could be assembled to create larger

complex objects, we build the OpticalNet dataset that deconstructs arbitrary-shaped objects into basic building blocks–small n × n grid

regions consisting of squares with sizes below the diffraction limit. This dataset is collected through microscopy imaging via sample

scanning, and we can train a deep-learning-based model to predict object images using diffraction images as inputs. With the trained model,

we translate diffraction images of complex-shaped objects into their corresponding object images for each spatial position and assemble

these modular predictions accordingly to reconstruct the complete structures, enabling subwavelength imaging beyond the diffraction limit.

Abstract

Optical imaging capable of resolving nanoscale features

would revolutionize scientific research and engineering ap-

plications across biomedicine, smart manufacturing, and

semiconductor quality control. However, due to the physical

phenomenon of diffraction, the optical resolution is limited

to approximately half the wavelength of light, which impedes

the observation of subwavelength objects such as the native

state coronavirus, typically smaller than 200 nm. Fortunately,

deep learning methods have shown remarkable potential in

uncovering underlying patterns within data, promising to

overcome the diffraction limit by revealing the mapping pat-

tern between diffraction images and their corresponding

ground truth object images. However, the absence of suit-

able datasets has hindered progress in this field–collecting

high-quality optical data of subwavelength objects is highly

difficult as these objects are inherently invisible under con-

ventional microscopy, making it impossible to perform stan-

dard visual calibration and drift correction. Therefore, we

provide the first general optical imaging dataset based on

the “building block” concept for challenging the diffraction

limit. Drawing an analogy to modular construction princi-

ples, we construct a comprehensive optical imaging dataset

comprising subwavelength fundamental elements, i.e., small

square units that can be assembled into larger and more

complex objects. We then frame the task as an image-to-

image translation task and evaluate various vision methods.

Experimental results validate our “building block” concept,

demonstrating that models trained on basic square units can

effectively generalize to realistic, more complex unseen ob-

jects. Most importantly, by highlighting this underexplored

AI-for-science area and its potential, we aspire to advance

optical science by fostering collaboration with the vision

and machine learning communities.
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1. Introduction

The opportunity to glimpse the wonders of the tiny world

with one’s eyes has fascinated researchers for millennia.

From rudimentary magnifying glasses of ancient times to

today’s advanced microscopes, this journey has given rise

to the fields of optical imaging and microscopy [12, 62],

which have become indispensable tools in fundamental re-

search and engineering applications, such as biostructure

imaging [5, 67, 71] and precision manufacturing [86, 119].

However, the wave nature of light manifests in diffraction

[115], a universal phenomenon that becomes particularly

pronounced when light waves interact with structures of

dimensions comparable to the wavelength, fundamentally

limiting the observation resolution in optical systems. An

illustrative explanation is provided in Fig. 2. This limitation,

known as the diffraction limit [87], constrains the minimum

observable feature in the imaging plane to a subwavelength

scale d = λ/(2NA), where λ denotes the illumination wave-

length and NA is the numerical aperture. Consequently, con-

ventional optical microscopy using visible light is restricted

to a spatial resolution of approximately 200 ∼ 250 nm [31].

This constraint led to electron microscopy (EM) [24] de-

velopment, which achieves atomic-scale resolution[48, 90]

but requires complex sample preparation and vacuum envi-

ronments [11, 73]. More critically, the irreversible radiation

damage from high-energy electron beams prevents their ap-

plication in real-time imaging of live biological entities in

their native state such as the inspection of the SARS-CoV-2

virus [23, 104]. In contrast, optical microscopy enables non-

invasive, real-time observation with simple sample prepa-

ration and prolonged observation capability [9, 92, 115],

although its resolution is fundamentally constrained by the

diffraction limit. To overcome this limitation while preserv-

ing optical advantages, various optical super-resolution tech-

niques have been developed. Notably, super-resolution fluo-

rescence microscopy [36, 84], recognized by the 2014 No-

bel Prize in Chemistry [8], achieved resolution of tens of

nanometers. However, this approach requires invasive fluo-

rescence tagging and complex sample preparation [7, 17],

compromising the inherent benefits of optical imaging and

limiting its application in real-time imaging and semiconduc-

tor metrology [26, 69]. This prompts a fundamental question:

“Can we see objects beyond the diffraction limit with only

conventional microscopy?”

Fortunately, deep learning methods have shown remark-

able potential in uncovering the underlying patterns within

data [50]. In addition, the ability of neural networks to ef-

ficiently solve the inverse scattering problem has also been

demonstrated [93], providing a solid theoretical foundation

for using deep learning[30, 99]. Therefore, this insight en-

ables us to resolve optical imaging at subwavelength reso-

lution in an end-to-end image-to-image translation manner

[39, 100, 118]. The interaction of light with objects creates
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Figure 2. Illustration of the diffraction limit. Similar to how digi-

tal images cannot have infinitely small pixels, an ideal point light

source inevitably diffracts into a finite-sized Airy disk in the imag-

ing plane. Then, two adjacent diffraction spots become indistin-

guishable when their separation falls below a certain threshold.

diffraction images that contain transformed detailed metro-

logical information about the objects being observed, such

as shape, size, and position [15, 78, 95]. Such metrological

information of an object being observed could be represented

by a 2D image, termed object image. Given the diffraction

images, neural networks can be directly utilized to decode

them to the ground truth object image. With the help of vision

algorithms, such an end-to-end approach requires no sample

modification or tagging, operates at low light intensities to

avoid photobleaching and does not rely on non-linear light-

matter interactions [3]. This presents a distinct advantage

over existing optical methods for overcoming the diffraction

limit, even owning the potential to achieve molecular and

atomic-scale resolution of live biological entities [56].

Deep learning methods require extensive training data.

However, to the best of our knowledge, there exists no open-

source subwavelength imaging dataset serving the general

purpose of addressing fundamental diffraction limit chal-

lenges. While several microscopic image datasets do exist,

they are highly domain-specific and constrained to particular

imaging targets, such as observing biological cells [70, 107]

and conducting lithic use-wear analysis [110] at scales larger

than the subwavelength. Additionally, the diversity in optical

setups, data formats, and experimental configurations among

these datasets prevents them from being collectively used

to train models that can generalize to observing different

and complex objects. This lack of a high-quality, generaliz-

able dataset significantly hinders the advancement of optical

imaging beyond the diffraction limit. Therefore, there is an

urgent need for an open-source microscopic dataset at the

subwavelength scale that can be widely used by the vision

and machine learning communities.

To provide a dataset that could be generalizable, we adopt

a building blocks approach where fundamental subwave-

length square elements can be assembled into arbitrary com-

plex shapes.



Our contributions are summarized as follows:

• In collaboration with top optical scientists, we provide

the first optical building blocks concept imaging dataset

beyond the diffraction limit. This required extremely care-

ful design and precise execution using advanced Focused

Ion Beam (FIB) technology at nanometer-scale preci-

sion, alongside a high-precision custom-built microscopy

system with sophisticated stabilization methods. Given

the significant costs involved, we also provide simula-

tion code for proof-of-concept testing before conducting

actual experiments.

• To evaluate the generalization ability of the trained

model, we provide two special testing sets with deeply

subwavelength-scale features: i) “Light” testing set for

evaluating the performance in observing objects with ar-

bitrary shapes; and ii) “Siemens Star” (SS) testing set for

evaluation on arbitrary rotations and arbitrary size.

• For algorithm benchmarking, we formulate the problem

as an image-to-image translation task, specifically pixel-

level binary classification. Through evaluating a wide

range of vision methods, we gain important insights for

future research—notably, transformers focusing on global

information outperform CNN-based methods in handling

environmental noise. Experimental results demonstrate

the feasibility of our concept, enabling the possibility of

overcoming the diffraction limit with traditional optical

microscopy.

By open-sourcing this optical imaging dataset and bench-

mark, we seek to encourage interdisciplinary collaboration

between optical science and computer vision communities to

address current challenges in subwavelength optical imaging.

This dataset provides a foundation for exploring computa-

tional approaches that enhance conventional microscopy’s

capabilities beyond the diffraction limit. Such advancements

could potentially benefit a wide range of applications where

high-resolution imaging is critical, including biological spec-

imen analysis such as virus screening and industrial applica-

tions like semiconductor quality control.

2. Related Work

Optical Methods to Challenge the Diffraction Limit.

Traditional optical methods like scanning near-field opti-

cal microscopy [44] offer high resolution but require inva-

sive near-field probes and cannot image internal structures.

Fluorescence-based methods [34, 52] achieve nanometer

resolution but require invasive fluorescent labeling. Ptychog-

raphy [14, 63, 83, 85] represents a promising alternative

achieves subwavelength resolution but faces challenges in-

cluding long acquisition times, computational intensity for

phase retrieval algorithms. These limitations have spurred

interest in AI-enhanced solutions[3, 77, 80, 97]. Recent ad-

vances show that AI-enabled methods can achieve deep sub-

wavelength resolution through non-invasive far-field mea-

surements without complex post-processing [57, 76, 96,

101, 102], demonstrating a promising direction in optical

research.

Image-to-image Translation. Image-to-image translation

[39, 100, 118] is a core computer vision task aimed to learn

mappings between input and output images, facilitating tasks

like image segmentation [58, 64], style transfer [45, 61, 88,

109, 118], image colorization [19, 38, 41, 49, 51, 112], and

image restoration [74, 103, 111, 113]. Outstanding perfor-

mance has been achieved on common objects, such as medi-

cal segmentation using U-Net [82] through end-to-end train-

ing. However, most approaches rely on the premise that the

correspondence between inputs and outputs can be visually

discernible, for instance, segmenting pixels into categories or

transferring visual styles without changing objects’ structure.

However, in optical research, such direct visual correspon-

dence is not always observable with traditional microscopy.

To bridge this gap and complement existing tasks, we intro-

duce a new vision challenge: translating diffracted images to

clear object images at the subwavelength level.

Microscopic Image Datasets. In the realm of vision tasks

involving microscopic images, numerous applications span

various scientific disciplines [1, 2, 6, 10, 18, 20, 25, 28, 37,

42, 43, 47, 53, 54, 65, 66, 75, 105, 108, 114, 116]. Rep-

resentative studies include research on bacteria [98], bio-

logical cells [13, 16, 40], tissue types [94], and material

structures [32, 110]. Each application presents unique chal-

lenges, particularly in terms of the high-level detail and

precision required in the images. These challenges are often

compounded by issues such as ambiguity in object proper-

ties and variations in sensing modalities. To address these

challenges, our approach includes a versatile framework

that supports both fundamental atomic objects and practical

objects across simulated and realistic modalities. A key dis-

tinction to existing datasets is the provision of an easy-to-use

simulation procedure for generating synthetic samples with

diverse object properties and sensing modalities, considering

the prohibitive cost of creating new image samples. This

approach allows researchers to economically validate new

ideas via simulation, before the costly experimental sample

acquisition, thereby conserving resources and human effort.

3. OpticalNet Dataset

Our primary contribution is the provision of a comprehen-

sive optical imaging dataset, that combines the theoretical

simulation data for systematic exploration and experimen-

tal data for real-world verification. Termed the OpticalNet,

the dataset comprises fundamental square unit samples that

can be assembled to form objects of arbitrary and complex

shapes. This foundational dataset contains image-to-image

translation relationships between elementary square objects

and their corresponding diffraction images, providing the

basis for training neural networks to translate diffraction im-



ages back to their corresponding central elementary geomet-

ric structures, namely object images. We provide a dataset

datasheet [27] in Appendix A.

3.1. Data Acquisition

Acoustic 
enclosure

633nm laser

Vibration isolation system

Camera
(a) Block (b) Light

(c) Siemens star (e) Microscopy setup in acoustic chamber(d) Diffraction images

Figure 3. a∼d: Fabricated samples and the diffraction images; e:

High-precision microscopy for data acquisition.

Given the large size of object samples and the limited

reception field of a camera, we adopt a practical approach

of photographing only sub-regions of an object sample at a

time. This method leverages the knowledge that any complex

object forming an object image can be systematically de-

composed through spatial scanning into smaller sub-regions,

each producing its own diffraction image.

Sample Fabrication. We fabricate our samples using a

high-precision dual-beam FIB system [79], a nanofabrication

technique extensively used across various sectors, including

semiconductor manufacturing and quantum computing. This

system employs a focused ion beam to precisely mill ma-

terial, complemented by an integrated electron microscope

that enables monitoring of the fabrication process. The sam-

ples are prepared on a 130 nm Au film on a glass coverslip,

a configuration commonly used in optical and electronic

devices. The fabrication process produces three types of

representative test samples: the Block sample, consisting

of squares that are uniform in size (180 nm) and positioned

randomly without overlapping; a calligraphic "Light" sample

demonstrating complex curved features and geometries; and

a Siemens star—a benchmark for testing optical resolution

[35], characterized by a radial pattern of periodic straight

lines. These samples are shown in Fig. 3.

High-Quality Microscopic Imaging. To obtain high-quality

subwavelength optical imaging data for each sub-region sam-

ple, we employ an ultra-precision custom-built microscopy

system and carefully design a set of stabilization methods

to enable long-term stable high-precision imaging with min-

imal mechanical drift and environment noise, as depicted

in Fig. 3. This system utilizes a coherent light source of

633nm wavelength in a vertically aligned configuration to

achieving an effective pixel size of 41.7 nm on the sample

plane. A linearly polarized beam of light is then focused

onto the sample plane through a high-numerical-aperture

objective mounted on a precision piezoelectric stage. The

detection scheme adopts a symmetric configuration, where

the transmitted intensity diffraction signals are detected with

a high-sensitivity sCMOS camera positioned in the far-field

regime. The optical path is mechanically stabilized through

a commercial vibration isolation system, and the acoustic

chamber enclosing the whole optical setup significantly at-

tenuates environmental noise across the acoustic frequency

range. We leave more details of the optical imaging process,

such as the positioning accuracy method of the optical imag-

ing system, in Appendix C. With extensive high-precision

and stabilization measures, as well as operation by profes-

sional optical scientists, we have ensured the quality of the

collected dataset to the best of our efforts.

Simulation Framework for Proof of Concept. As the realis-

tic data creation process is slow and highly costly, we present

an open-source computational framework for simulating op-

tical field propagation using the angular spectrum method

[60]. This framework provides simulation of light-matter in-

teractions and diffraction phenomena. Developed entirely in

Python, this framework combines computational efficiency

(∼ 1 second per instance on an AMD EPYC 7742) with user-

friendliness, enabling researchers to easily modify and ex-

tend the codebase for various applications. Researchers can

fine-tune illumination characteristics, e.g., wavelength, and

customize sample properties to match specific experimental

conditions. Using our OpticalNet dataset as a benchmark, the

framework allows researchers to assess how variations in the

physical size and shapes of samples influence model perfor-

mance and generalization capabilities, by simply inputting

binary mask images of the desired structures. The framework

then generates the corresponding diffraction images, which

researchers can use alongside object images to train neural

networks and evaluate their performance on the provided

samples, serving as a proof of concept before conducting

realistic experiments.

3.2. Data Characteristics and Analysis

Categories of the Datasets. We categorize the dataset into

three groups: Block dataset, Light dataset, and Siemens Star

(SS) dataset. Detailed information can be found in Table 1.

The diffraction images are sized 64 × 64 while the object

images are provided in three different scales: 3×3, 5×5, and

7×7. The Block dataset serves as the training set, where ob-

ject images of large scale can be built up from the square

units within this dataset. The latter two are used to assess the

generalization of the trained model. The “Light” dataset fea-

tures complex curved boundaries and irregular structural ele-

ments with multiple scale ranges of sub-wavelength features

that exceed the resolution limits of traditional optical mi-

croscopy. This dataset is useful for determining if the model

has genuinely learned the underlying physics of diffraction

rather than merely memorizing specific geometric images

from the Block dataset. The SS dataset features a 36-spoke

Siemens star pattern, serving as a standardized benchmark to
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are used to investigate how varying sizes of ground truth images

affect the model’s ability.

Table 1. Dataset categories, usage, and the number of data points

for training and testing.

Dataset Block Light SS

For training? " % %

Simulation
# training samples 12,068 - -

# testing samples 1,000 4,356 4,356

Experiment
# training samples 26,316 - -

# testing samples 4,356 4,356 4,356

test the optical imaging resolution ability of models across

continuous size variations and arbitrary angular orientations.

As illustrated in Fig. 4, while the incident light field ex-

hibits maximum intensity within a 3×3 central block area

defined by its Full Width at Half Maximum (FWHM), a

diffraction image is not simply determined by this area but

is a complex interference including contributions from the

surroundings. This fact makes the task significantly challeng-

ing, prompting us to explore the optimal size of the ground

truth object images. Therefore, a key design of the dataset

is the provision of 3 sizes of ground truth images, including

3×3, 5×5, and 7×7. In the 3×3 case, the trained model must

focus on the central part while contending with the influence

of the surroundings. Conversely, in the 7×7 case, the model

may receive insufficient information to accurately predict

all square units due to the diminished light intensity on the

outer edges. According to the number of white squares, the

statistics of realistic experiment data are shown in Fig. 5. The

statistics of simulation data are presented in Appendix C.1.

Note that, the high number of all-black blocks and the low

number of blocks containing a large number of white squares

are due to the scanning process, explained in Appendix C.2.

Difficulty Level by the Dataset. The simpler scenario fo-

cuses on sub-wavelength OpticalNet Block data. By training

on the Block dataset and testing on previously unseen testing

samples of similar structures, we assess the model’s ability

to learn fundamental diffraction principles in elementary

square units. On the other hand, the hard case is the model’s

generalization learned from the Block in uniform size and

orientation to objects of arbitrary size and direction. This in-

cludes the SS and Light datasets. In particular, the SS dataset,

featuring the Siemens Star presents the most significant chal-

lenge. The manufactured Siemens Star sample includes 36

spokes arranged uniformly across 360°, with the distance

between them decreasing continuously from the outer edge

to the center, testing the model’s capability to resolve details

at various scales and directions.

4. Task Definition: Image-to-Image Translation

With the collected data, we now define our task as an image-

to-image translation problem characterized by a mapping

function Fφ ∶ R
H1×W1×1

→ R
H×W×1 parameterized by a

neural network ϕ. This function F is designed to trans-

form input diffraction images into outputs that approximate

the corresponding ground truth object images. Formally,

our dataset comprises N diffraction images, denoted as

{xi ∈ R
H1×W1×1}Ni=1, and their respective ground truth ob-

ject images denoted as {yi ∈ R
H×W×1}Ni=1. To optimize our

image translation mapping function F , we define a funda-

mental loss function for training:

LF =
1

N

N

∑
i=1

ℓ(F(xi), yi), (1)

where ℓ(⋅, ⋅) is a loss function quantifying the discrepancy

between the model’s predicted image F(xi) and the corre-

sponding ground truth image yi.

As the ground truth object image yi uses binary values to

indicate object presence at each pixel, we employ the Binary

Cross-Entropy (BCE) loss function:

ℓ(F(xi), yi) = −
1

H ×W

H

∑
h=1

W

∑
w=1

[y(h,w)i logF(xi)
(h,w)

+ (1 − y(h,w)i ) log(1 −F(xi)
(h,w))], (2)

where F(xi)
(h,w) and y

(h,w)
i denote the predicted and

ground truth values at pixel location (h,w), respectively.

The neural network parameterizing F could be optimized us-

ing gradient-based techniques, such as SGD [81] and Adam

[46], to minimize LF in Eq. 1 over the training dataset. Once

trained, this model is capable of predicting object images

from previously unseen diffraction images. Though others

may also use regression methods or even generative methods

to model Eq. 1, to maintain simplicity in this study, we have

particularly chosen to define the task of translating a diffrac-

tion image to a ground truth object image as a pixel-level

binary classification problem and leave the exploration of

other modeling methods in the future work.

Evaluation Using Stiching A simple procedure assessing

the quality or visualizing the final output could utilize a

threshold λ that converts the predicted probabilities from F

into binary classification images directly. Each pixel in the

output image is labeled as either occupied by the object (1)

or not (0), based on the predicted probability relative to this
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Figure 5. Distribution showing the count of white squares (etched regions to allow light transmission) within the experimental Block

dataset. The orange bars represent additional all-black object images (unetched substrates) included in the dataset to help the model learn to

discriminate environmental noise from actual object features.

threshold. The binarized output at each pixel location (h,w),

represented by ŷ
(h,w)
i , is determined as follows:

ŷ
(h,w)
i =

⎧⎪⎪
⎨
⎪⎪⎩

1 if F(xi)
(h,w)

≥ λ,

0 if F(xi)
(h,w)

< λ,
(3)

The threshold λ is typically chosen based on validation per-

formance or set to a default value such as 0.5.

Since our scanning process is moving at one square every

step, a specific square unit’s prediction could utilize all the

block images that could cover it to enhance the prediction.

As shown in Fig. 6, for a unit position (k, l) (marked as the

red square), its output is related to multiple object images

that can reach this position. For each object image of them, it

could generate a corresponding diffraction image, and then

we use a model taking this diffraction image as input, we

would get a prediction image that contains the prediction

for the location (k, l). Finally, we average the prediction on

localization (k, l) using these block images. Therefore, we

propose an enhanced evaluation and visualization procedure

using a stitching process. Formally, this procedure could be

expressed as

y
(k,l)
sample

= Exm∼X
′[F(xm)

(k′,l′)], (4)

where X ′ denotes a set of the diffraction images xm whose

corresponding object image could cover the localization

(k, l) of a whole big sample, and (k′, l′) denotes the relevant

position in the prediction image F(xm). After this stitching

process, we could then apply the same binary procedure in

Eq. 3 to get the final binary classification result.

Figure 6. Illustration for the stitching. For the 3×3 block config-

uration setting, each target location (red box) is covered by nine

overlapping block images (yellow box).

Table 2. Comparisons of models trained on simulation Block dataset

evaluated on different test sets. Best result is marked in bold.

Method
Block Light SS

acc. F1 JI acc. F1 JI acc. F1 JI

ResUNet-a 72.10 65.23 65.94 72.73 69.30 65.02 62.13 52.20 44.81

AttU-Net 75.34 67.21 67.59 73.34 69.18 65.10 61.65 54.77 47.30

ResNet-18 81.51 78.31 68.94 75.33 76.47 72.65 69.19 63.99 52.72

ResNet-34 83.48 79.44 69.73 75.62 76.86 72.12 66.12 60.28 51.94

transformer 84.77 79.51 71.30 75.00 77.62 73.82 69.43 62.79 53.19

(a) Block (b) Light (c) SS

S
ti

tc
h

e
d

 P
r
e
d

ic
ti

o
n

G
r
o
u

n
d

 T
r
u

th

Figure 7. Visualization of stitched predictions using the transformer

model on the Block datasets.

5. Algorithm Benchmarking

Our experiments engage in comparisons with several state-

of-the-art vision models on our OpticalNet dataset. Through

the experiments, we aim to 1) assess the feasibility of us-

ing optical patterns learned from the Block dataset to per-

form image-to-image translation tasks on more complex,

unseen shapes that extend beyond merely small-dimensional

squares, and hence the ability to construct meaningful, gen-

eralized patterns from the learning; 2) evaluate the fidelity

of simulation datasets in reflecting the trends observed in

datasets collected from realistic experiment and hence evalu-

ate the framework’s practical applicability; 3) for vision and

machine learning communities, examine potential trends ex-

hibited by the models to better understand their effectiveness

and application in optimal pattern recognition.

Datasets. These models trained on the Block datasets are

tested against specific Block test sets and generalized test

sets of unseen, more complex object images.

Evaluation Metrics. To evaluate model performance on our



Table 3. Performance under metrics of models trained on experiment datasets with varying ground truth block dimensions., evaluated across

different test sets. Best result for each configuration is marked in bold.

GT dimension Method
Block Light SS

acc. F1 JI acc. F1 JI acc. F1 JI

3 × 3

ResUNet-a 67.32 51.18 45.70 69.34 67.15 61.92 49.89 35.04 28.39

AttU-Net 68.31 52.30 45.90 71.51 68.33 61.20 51.16 36.18 30.16

ResNet-18 73.70 62.00 56.71 73.95 73.82 72.77 52.31 42.70 39.14

ResNet-34 75.01 61.28 56.46 74.05 75.98 71.99 50.98 43.40 40.35

transformer 80.31 76.33 66.90 74.71 76.59 76.34 55.81 47.38 42.89

5 × 5

ResUNet-a 66.17 54.89 45.61 73.47 67.04 60.32 53.82 36.61 30.16

AttU-Net 68.92 53.21 44.94 73.32 67.89 59.45 51.15 37.90 32.13

ResNet-18 73.19 60.35 56.99 74.30 74.90 69.56 50.96 43.07 37.60

ResNet-34 74.09 60.94 57.51 74.99 75.51 72.55 51.53 42.16 38.05

transformer 80.17 74.36 63.51 77.98 78.35 77.49 53.50 48.37 41.84

7 × 7

ResUNet-a 66.12 53.18 43.15 73.36 68.91 62.40 52.64 38.21 32.18

AttU-Net 66.35 54.37 46.16 71.65 67.74 60.39 51.01 39.05 32.90

ResNet-18 76.38 63.36 59.31 77.72 75.05 70.63 49.72 44.10 40.88

ResNet-34 76.74 64.01 59.58 77.51 74.16 71.99 50.67 44.75 41.03

transformer 79.95 74.92 62.78 78.11 76.85 72.47 52.70 48.74 42.44

image-to-image translation task, we employ classification

accuracy, F1-score, and the Jaccard index (JI), averaged

across the classes to assess the model by the ground truth.

Baseline Methods. We employ a variety of vision backbone

methods, including ResUNet-a [22], Attention U-Net (AttU-

Net) [68], ResNet-18, ResNet-34 [33], and transformer [91].

Implementation Details We train the models using a sin-

gle NVIDIA A100 GPU and PyTorch [72], employing the

Adam optimizer [46]. The initial learning rate is set at 1e-3,

with a linear decay factor of 0.9 applied every 30 epochs.

Training is conducted over a total of 500 epochs with a mini-

batch size of 16. We set λ to the default value of 0.5 in

Eq. 3. Data augmentation techniques that maintain the in-

herent characteristics of the optical images [29, 59], such as

flips and right-angled rotations, are employed. Specifically,

vertical and horizontal flips are each applied with an equal

probability of occurrence. Rotations in increments of 90° are

uniformly applied across 0, 90, 180, and 270°. Detailed

experimental setup are in Appendix D.

5.1. Results on Simulation Dataset

We first train the model on the Block using the simulation

dataset. As a proof of concept, we utilize a 3 × 3-grid setting

of the Block configuration to validate the idea of building

blocks under the simulation before expanding to datasets

collected from experiments.

Table 2 reports the performance of various models on

the simulated dataset. All models demonstrate strong perfor-

mance on the Block patterns and the out-of-domain Light

test set. The transformer achieves the best overall perfor-

mance across all tests, while ResNet-18 performs better with

the Light logo. Though performance dips on SS test set due

to the models’ difficulties with more subtle pattern variations

(a) Block (c) SS(b) Light

G
r
o

u
n

d
 T

r
u

th
P

re
d

ic
ti

o
n

 b
y

 

R
es
N
et
-3
4

P
re

d
ic

ti
o

n
 b

y
 

tr
a
n
sf
o
rm
er

Figure 8. Visualization of stitched predictions using ResNet-34

(row 2) and transformer (row 3) on the experimental dataset. In (a),

the transformer achieves a high-fidelity translation of the ground

truth for the Block, whereas ResNet-34’s output appears blurry.

For (b) and (c) transformer resolves the spokes of SS with greater

depth and preserves details of Light like small curves. Notably,

ResNet-34 shows noisy predictions around the Light symbol.

in the central regions, the visualization of the composed

Siemens Star pattern in Fig. 7, shows that the models are

capable of effectively translating its broader components.

Given the encouraging results on the simulation dataset, it

appears that our approach can effectively generalize to more

complex and meaningful patterns. We now aim to extend

this validation to the realistic experimental dataset.



(a) 3×3 (b) 5×5 (c) 7×7

Figure 9. Stitched predictions on SS performed by transformers

trained with varying ground truth block dimensions.

5.2. Results on Realistic Experiment Dataset

Building on the findings from the simulated dataset, experi-

ments presented in Table 3 assess the performance of models

trained on realistic experimental datasets with configurations

of 3×3, 5×5, and 7×7 units of the Block datasets respectively.

From the quantitative result in Table 3 and the qualitative

visualization depicted in Fig. 8, the models demonstrate the

capability to learn the Block patterns, and generalize them to

a broader variety of shapes, effectively translating these into

unseen, more complex shape patterns. We observe minimal

variation in results across the GT block dimensions used

for training. The transformer consistently outperforms other

models on both in-domain Block test sets and broader pat-

tern recognition tasks. While the ResNet-based architectures

previously matched the transformer’s performance in simula-

tions, they exhibit a decline and produce noisy output in the

more complex experimental settings, which are inherently

subject to greater environmental noise. This decline could

be ascribed to the convolutional networks’ focus on local

information and their limited capacity for handling global

information crucial in the optics domain for mitigating sus-

ceptibility to noise [4, 55]. Meanwhile, transformers, which

process longer-term dependencies, may better manage the

noise, potentially explaining their enhanced performance in

realistically collected experimental datasets. Overall, there

remains a high level of consistency in the trends observed

from the simulation to the experiment dataset, validating the

fidelity of the simulation and underscoring the robustness of

our simulation-to-experiment modeling approach.

Additionally, we performed comparative analyses of

stitched predictions using transformers trained on ground

truth blocks of increasing sizes. As shown in Fig. 9, when

the GT block dimensions increase, overall visual quality im-

proves. However, this comes with a tradeoff of increased

noise, particularly observed at the portions of spoke fur-

ther from the center. This may be attributed to more blocks

representing more information channels, but comes with ad-

ditional noise susceptibility and computational complexity.

6. Impact and Limitation

Scientific and Engineering Impact. By integrating AI

with microscopy, our work bridges machine learning with

optical physics. Collaborations between two communities

aim to enhance our understanding of subwavelength phe-

nomena, deepening our insights into the underlying physics

and broadening its applications. For instance, our dataset

could enhance the resolution of viral particles with only a

smartphone-based microscope [67, 89, 104], democratizing

subwavelength imaging and potentially allowing for accurate

remote infectious disease detection via on-chip microscopy

[117]. Additionally, our tagging-free approach eliminates the

need for harmful chemicals used in fluorescent microscopy,

promoting the sustainability of microscopic imaging [106].

Limitation and Future Work. While our OpticalNet

dataset showcases the capability of pixelated imaging be-

yond the diffraction limit, achieving continuous imaging

remains both promising and challenging. Future work could

explore finer resolution with more advanced computer vi-

sion algorithms. Additionally, this building block concept

could be extended to 3D imaging through block stacking

and RGB imaging using varying light wavelength, poten-

tially enabling multi-dimensional, full-color super-resolution

imaging. Moreover, our modest performance on the Siemens

Star test (∼ 50% accuracy) reveals room for improvement.

While we successfully capture basic structural information,

the predicted object images still have room for improvement

in resolution and clarity. Future research could leverage ad-

vanced deep learning architectures and image processing

algorithms to further enhance predicted image quality and

resolution. Besides, the challenging sim-to-real task is also

an interesting future work, which may improve cost effi-

ciency by adapting a model trained on simulation data to

realistic data.

7. Conclusion

We introduce a general optical imaging dataset beyond the

diffraction limit and demonstrate that deep learning-based

computer vision methods can effectively translate diffrac-

tion images into object images at subwavelength resolution.

We showed that with the building block concept, models

trained on fundamental square units can generalize to com-

plex shapes. Our work offers a data-driven perspective while

traditional approaches to challenge the diffraction limit have

primarily focused on specialized optical concept. In our

view based on the information theory, the deep learning

training process incorporates prior knowledge that helps ex-

tract hidden subwavelength information from conventional

microscopy data, enabling optical imaging capabilities be-

yond the diffraction limit. While our current implementation

achieves promising results and has uncovered foundational

insights, there remains ample room for exploration in fu-

ture work. By fostering collaboration between the optical

science and computer vision communities, we believe that

the diffraction limit and imaging lens will be the things of

the past, enabling new scientific discoveries and practical

applications at the age of artificial intelligence and big data.



Acknowledgment

This work was supported by the Singapore National Re-

search Foundation (Grant No. NRF-CRP23-2019-0006). The

authors would like to thank Prof. Nikolay I. Zheludev for

insightful discussion and inputs.

References

[1] Mary Damilola Aiyetigbo, Alexander Korte, Ethan Ander-

son, Reda Chalhoub, Peter Kalivas, Feng Luo, and Nianyi

Li. Unsupervised microscopy video denoising. In CVPR

workshop, 2024.

[2] Ashesh, Alexander Krull, Moises Di Sante, Francesco Silvio

Pasqualini, and Florian Jug. µsplit: Image decomposition

for fluorescence microscopy. In ICCV, 2023.

[3] Vasily N Astratov, Yair Ben Sahel, Yonina C Eldar, Luzhe

Huang, Aydogan Ozcan, Nikolay Zheludev, Junxiang Zhao,

Zachary Burns, Zhaowei Liu, Evgenii Narimanov, et al.

Roadmap on label-free super-resolution imaging. Laser

& Photonics Rev., 17(12):2200029, 2023.

[4] Ravikiran Attota. Noise analysis for through-focus scanning

optical microscopy. Opt. Lett., 41(4):745–748, 2016.

[5] Harikrushnan Balasubramanian, Chad M Hobson, Teng-

Leong Chew, and Jesse S Aaron. Imagining the future

of optical microscopy: everything, everywhere, all at once.

Commun. Biol., 6(1):1096, 2023.

[6] Tal Ben-Haim and Tammy Riklin Raviv. Graph neural net-

work for cell tracking in microscopy videos. In ECCV, 2022.

[7] Eric Betzig, George H. Patterson, Rachid Sougrat, O. Wolf

Lindwasser, Scott Olenych, Juan S. Bonifacino, Michael W.

Davidson, Jennifer Lippincott-Schwartz, and Harald F. Hess.

Imaging intracellular fluorescent proteins at nanometer reso-

lution. Science, 313(5793):1642–1645, 2006.

[8] Eric Betzig, Stefan W Hell, and William E Moerner. The

nobel prize in chemistry 2014. Nobel Media AB, 2014.

[9] Martin J Booth. Adaptive optical microscopy: the ongoing

quest for a perfect image. Light Sci. Appl., 3(4):e165–e165,

2014.

[10] Nicolas Bourriez, Ihab Bendidi, Ethan Cohen, Gabriel

Watkinson, Maxime Sanchez, Guillaume Bollot, and Au-

guste Genovesio. ChAda-ViT: Channel adaptive atten-

tion for joint representation learning of heterogeneous mi-

croscopy image. In CVPR, 2024.

[11] John J. Bozzola and Lonnie D. Russell. Electron Microscopy:

Principles and Techniques for Biologists. Jones & Bartlett

Learning, 1999.

[12] David J Brady. Optical imaging and spectroscopy. John

Wiley & Sons, 2009.

[13] Jordão Bragantini, Merlin Lange, and Loïc Royer. Large-

scale multi-hypotheses cell tracking using ultrametric con-

tours maps. In ECCV, 2024.

[14] Eunju Cha, Chanseok Lee, Mooseok Jang, and Jong Chul Ye.

DeepPhaseCut: Deep relaxation in phase for unsupervised

fourier phase retrieval. IEEE Trans. Pattern Anal. Mach.

Intell., 44(12):9931–9943, 2022.

[15] Eng Aik Chan, Carolina Rendón-Barraza, Benquan Wang,

Tanchao Pu, Jun-Yu Ou, Hongxin Wei, Giorgio Adamo, Bo

An, and Nikolay I Zheludev. Counting and mapping of

subwavelength nanoparticles from a single shot scattering

pattern. Nanophotonics, 12(14):2807–2812, 2023.

[16] Claire Lifan Chen, Ata Mahjoubfar, Li-Chia Tai, Ian K

Blaby, Allen Huang, Kayvan Reza Niazi, and Bahram Jalali.

Deep learning in label-free cell classification. Sci. Rep., 6

(1):21471, 2016.

[17] Long Chen, Xingye Chen, Xusan Yang, Chao He, Miaoyan

Wang, Peng Xi, and Juntao Gao. Advances of super-

resolution fluorescence polarization microscopy and its ap-

plications in life sciences. Comput. Struct. Biotechnol. J.,

18:2209–2216, 2020.

[18] Minghao Chen, Mukesh Bangalore Renuka, Lu Mi, Jeff

Lichtman, Nir Shavit, and Yaron Meirovitch. Learning to

correct sloppy annotations in electron microscopy volumes.

In CVPR workshop, 2023.

[19] Xiaoyan Cong, Yue Wu, Qifeng Chen, and Chenyang Lei.

Automatic controllable colorization via imagination. In

CVPR, 2024.

[20] Colin L. V. Cooke, Fanjie Kong, Amey Chaware, Kevin C.

Zhou, Kanghyun Kim, Rong Xu, D. Michael Ando,

Samuel J. Yang, Pavan Chandra Konda, and Roarke

Horstmeyer. Physics-enhanced machine learning for vir-

tual fluorescence microscopy. In ICCV, 2021.

[21] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and

Christopher Ré. Flashattention: Fast and memory-efficient

exact attention with io-awareness. In NeurIPS, 2022.

[22] Foivos I. Diakogiannis, François Waldner, Peter Caccetta,

and Chen Wu. ResUNet-a: A deep learning framework for

semantic segmentation of remotely sensed data. ISPRS J.

Photogramm. Remote Sens., 162:94–114, 2020.

[23] RF Egerton, P Li, and M Malac. Radiation damage in the

tem and sem. Micron, 35(6):399–409, 2004.

[24] Ray F. Egerton. Physical Principles of Electron Microscopy:

An Introduction to TEM, SEM, and AEM. Springer, 2013.

[25] Benjamin Gallusser and Martin Weigert. TRACKASTRA:

transformer-based cell tracking for live-cell microscopy. In

ECCV, 2024.

[26] Mahipal Ganji, Indra A Shaltiel, Shveta Bisht, Eugene Kim,

Ana Kalichava, Christian H Haering, and Cees Dekker. Real-

time imaging of dna loop extrusion by condensin. Science,

360(6384):102–105, 2018.

[27] Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jen-

nifer Wortman Vaughan, Hanna M. Wallach, Hal Daumé III,

and Kate Crawford. Datasheets for datasets. Commun. ACM,

64(12):86–92, 2021.

[28] Anna S. Goncharova, Alf Honigmann, Florian Jug, and

Alexander Krull. Improving blind spot denoising for mi-

croscopy. In ECCV, 2020.

[29] Ander Gracia Moisés, Ignacio Vitoria Pascual, José Javier

Imas González, and Carlos Ruiz Zamarreño. Data augmen-

tation techniques for machine learning applied to optical

spectroscopy datasets in agrifood applications: A compre-

hensive review. Sensors, 23(20):8562, 2023.

[30] Yu Guan, Tingting Fang, Diankun Zhang, and Congming Jin.

Solving Fredholm integral equations using deep learning.

Int. J. Appl. Comput. Math., 8(2), 2022.



[31] Xiang Hao, Cuifang Kuang, Zhaotai Gu, Yifan Wang, Shuai

Li, Yulong Ku, Yanghui Li, Jianhong Ge, and Xu Liu. From

microscopy to nanoscopy via visible light. Light Sci. Appl.,

2(10):e108–e108, 2013.

[32] Eric Hayman, Barbara Caputo, Mario Fritz, and Jan-Olof

Eklundh. On the significance of real-world conditions for

material classification. In ECCV, 2004.

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016.

[34] Stefan W Hell and Jan Wichmann. Breaking the diffraction

resolution limit by stimulated emission: stimulated-emission-

depletion fluorescence microscopy. Opt. Lett., 19(11):780–

782, 1994.

[35] Roarke Horstmeyer, Rainer Heintzmann, Gabriel Popescu,

Laura Waller, and Changhuei Yang. Standardizing the res-

olution claims for coherent microscopy. Nature Photonics,

10(2):68–71, 2016.

[36] Bo Huang, Mark Bates, and Xiaowei Zhuang. Super-

resolution fluorescence microscopy. Annu. Rev. Biochem.,

78(1):993–1016, 2009.

[37] Mude Hui, Zihao Wei, Hongru Zhu, Fei Xia, and Yuyin Zhou.

MicroDiffusion: Implicit representation-guided diffusion for

3D reconstruction from limited 2D microscopy projections.

In CVPR, 2024.

[38] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. Let

there be color!: joint end-to-end learning of global and local

image priors for automatic image colorization with simul-

taneous classification. ACM Trans. Graph., 35(4):110:1–

110:11, 2016.

[39] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A.

Efros. Image-to-image translation with conditional adver-

sarial networks. In CVPR, 2017.

[40] Hartland W Jackson, Jana R Fischer, Vito RT Zanotelli,

H Raza Ali, Robert Mechera, Savas D Soysal, Holger Moch,

Simone Muenst, Zsuzsanna Varga, Walter P Weber, et al.

The single-cell pathology landscape of breast cancer. Nature,

578(7796):615–620, 2020.

[41] Xiaoyang Kang, Tao Yang, Wenqi Ouyang, Peiran Ren,

Lingzhi Li, and Xuansong Xie. Ddcolor: Towards photo-

realistic image colorization via dual decoders. In ICCV,

2023.

[42] Bashir Kazimi, Karina Ruzaeva, and Stefan Sandfeld. Self-

supervised learning with generative adversarial networks for

electron microscopy. In CVPR, 2024.

[43] Rihuan Ke, Aurélie Bugeau, Nicolas Papadakis, Peter

Schütz, and Carola-Bibiane Schönlieb. Learning to segment

microscopy images with lazy labels. In ECCV, 2020.

[44] Fritz Keilmann and Rainer Hillenbrand. Near-field mi-

croscopy by elastic light scattering from a tip. Philos. Trans.

R. Soc. A Math. Phys. Eng. Sci., 362(1817):787–805, 2004.

[45] Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee,

and Jiwon Kim. Learning to discover cross-domain relations

with generative adversarial networks. In ICML, 2017.

[46] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In ICLR, 2015.

[47] Oren Kraus, Kian Kenyon-Dean, Saber Saberian, Maryam

Fallah, Peter McLean, Jess Leung, Vasudev Sharma, Ayla

Khan, Jia Balakrishnan, Safiye Celik, Dominique Beaini,

Maciej Sypetkowski, Chi Vicky Cheng, Kristen Morse, Mau-

reen Makes, Ben Mabey, and Berton Earnshaw. Masked

autoencoders for microscopy are scalable learners of cellular

biology. In CVPR, 2024.

[48] Abinash Kumar, Jonathon N Baker, Preston C Bowes,

Matthew J Cabral, Shujun Zhang, Elizabeth C Dickey, Dou-

glas L Irving, and James M LeBeau. Atomic-resolution

electron microscopy of nanoscale local structure in lead-

based relaxor ferroelectrics. Nature Mater., 20(1):62–67,

2021.

[49] Gustav Larsson, Michael Maire, and Gregory

Shakhnarovich. Learning representations for automatic

colorization. In ECCV, 2016.

[50] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep

learning. Nature, 521(7553):436–444, 2015.

[51] Junsoo Lee, Eungyeup Kim, Yunsung Lee, Dongjun Kim,

Jaehyuk Chang, and Jaegul Choo. Reference-based sketch

image colorization using augmented-self reference and

dense semantic correspondence. In CVPR, 2020.

[52] Mickaël Lelek, Melina T Gyparaki, Gerti Beliu, Florian

Schueder, Juliette Griffié, Suliana Manley, Ralf Jungmann,

Markus Sauer, Melike Lakadamyali, and Christophe Zim-

mer. Single-molecule localization microscopy. Nature Rev.

Methods Primers, 1(1):39, 2021.

[53] Rui Li, Mikhail Kudryashev, and Artur Yakimovich. Solv-

ing the inverse problem of microscopy deconvolution with

a residual Beylkin-Coifman-Rokhlin neural network. In

ECCV, 2024.

[54] Dongnan Liu, Donghao Zhang, Yang Song, Fan Zhang, Lau-

ren O’Donnell, Heng Huang, Mei Chen, and Weidong Cai.

Unsupervised instance segmentation in microscopy images

via panoptic domain adaptation and task re-weighting. In

CVPR, 2020.

[55] Sheng Liu, Michael J Mlodzianoski, Zhenhua Hu, Yuan Ren,

Kristi McElmurry, Daniel M Suter, and Fang Huang. scmos

noise-correction algorithm for microscopy images. Nature

Methods, 14(8):760–761, 2017.

[56] Tongjun Liu, Jun-Yu Ou, Eric Plum, Kevin F MacDonald,

and Nikolay I Zheludev. Visualization of subatomic move-

ments in nanostructures. Nano Let., 21(18):7746–7752,

2021.

[57] Tongjun Liu, Cheng-Hung Chi, Jun-Yu Ou, Jie Xu, Eng Aik

Chan, Kevin F MacDonald, and Nikolay I Zheludev. Pi-

cophotonic localization metrology beyond thermal fluctua-

tions. Nature Mater., 22(7):844–847, 2023.

[58] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In CVPR,

2015.

[59] Boyuan Ma, Xiaoyan Wei, Chuni Liu, Xiaojuan Ban, Haiyou

Huang, Hao Wang, Weihua Xue, Stephen Wu, Mingfei Gao,

Qing Shen, et al. Data augmentation in microscopic images

for material data mining. NPJ Comput. Mater., 6(1):125,

2020.



[60] Kyoji Matsushima and Tomoyoshi Shimobaba. Band-limited

angular spectrum method for numerical simulation of free-

space propagation in far and near fields. Opt. Express, 17

(22):19662–19673, 2009.

[61] Youssef Alami Mejjati, Christian Richardt, James Tompkin,

Darren Cosker, and Kwang In Kim. Unsupervised attention-

guided image-to-image translation. In NeurIPS, 2018.

[62] Jerome Mertz. Introduction to optical microscopy. Cam-

bridge University Press, 2019.

[63] Jianwei Miao. Computational microscopy with coherent

diffractive imaging and ptychography. Nature, 637:281–295,

2025.

[64] Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza,

Nasser Kehtarnavaz, and Demetri Terzopoulos. Image seg-

mentation using deep learning: A survey. IEEE Trans. Pat-

tern Anal. Mach. Intell., 44(7):3523–3542, 2022.

[65] Björn Möller, Zhengyang Li, Markus Etzkorn, and Tim Fin-

gscheidt. Low-resolution-only microscopy super-resolution

models generalizing to non-periodicities at atomic scale. In

CVPR workshop, 2024.

[66] Youssef S. G. Nashed, Frédéric Poitevin, Harshit Gupta,

Geoffrey Woollard, Michael Kagan, Chun Hong Yoon, and

Daniel Ratner. CryoPoseNet: End-to-end simultaneous learn-

ing of single-particle orientation and 3D map reconstruction

from cryo-electron microscopy data. In ICCV workshop,

2021.

[67] Vasilis Ntziachristos. Going deeper than microscopy: the

optical imaging frontier in biology. Nature Methods, 7(8):

603–614, 2010.

[68] Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew

Lee, Mattias Heinrich, Kazunari Misawa, Kensaku Mori,

Steven McDonagh, Nils Y Hammerla, Bernhard Kainz, Ben

Glocker, and Daniel Rueckert. Attention U-Net: Learning

where to look for the pancreas. In MIDL, 2018.

[69] Ndubuisi G Orji, Mustafa Badaroglu, Bryan M Barnes, Car-

los Beitia, Benjamin D Bunday, Umberto Celano, Regis J

Kline, Mark Neisser, Yaw Obeng, and AE Vladar. Metrology

for the next generation of semiconductor devices. Nature

Electron., 1(10):532–547, 2018.

[70] Wei Ouyang, Fynn Beuttenmueller, Estibaliz Gómez-de

Mariscal, Constantin Pape, Tom Burke, Carlos Garcia-

López-de Haro, Craig Russell, Lucía Moya-Sans, Cristina

de-la Torre-Gutiérrez, Deborah Schmidt, Dominik Kutra,

Maksim Novikov, Martin Weigert, Uwe Schmidt, Peter

Bankhead, Guillaume Jacquemet, Daniel Sage, Ricardo Hen-

riques, Arrate Muñoz-Barrutia, Emma Lundberg, Florian

Jug, and Anna Kreshuk. Bioimage model zoo: a community-

driven resource for accessible deep learning in bioimage

analysis. BioRxiv, 2022.

[71] Vimal Prabhu Pandiyan, Aiden Maloney-Bertelli, James A

Kuchenbecker, Kevin C Boyle, Tong Ling, Zhijie Charles

Chen, B Hyle Park, Austin Roorda, Daniel Palanker, and

Ramkumar Sabesan. The optoretinogram reveals the primary

steps of phototransduction in the living human eye. Sci. Adv.,

6(37):eabc1124, 2020.

[72] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zem-

ing Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-

son, Andreas Köpf, Edward Z. Yang, Zachary DeVito, Mar-

tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit

Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch:

An imperative style, high-performance deep learning library.

In NeurIPS, 2019.

[73] Christopher J Peddie, Christel Genoud, Anna Kreshuk, Kim-

berly Meechan, Kristina D Micheva, Kedar Narayan, Con-

stantin Pape, Robert G Parton, Nicole L Schieber, Yannick

Schwab, et al. Volume electron microscopy. Nature Rev.

Methods Primers, 2(1):51, 2022.

[74] Mangal Prakash, Alexander Krull, and Florian Jug. Fully

unsupervised diversity denoising with convolutional varia-

tional autoencoders. In ICLR, 2021.

[75] Valeriya Pronina, Filippos Kokkinos, Dmitry V. Dylov, and

Stamatios Lefkimmiatis. Microscopy image restoration with

deep wiener-kolmogorov filters. In ECCV, 2020.

[76] Tanchao Pu, Jun-Yu Ou, Vassili Savinov, Guanghui Yuan,

Nikitas Papasimakis, and Nikolay I Zheludev. Unlabeled far-

field deeply subwavelength topological microscopy (DSTM).

Adv. Sci., 8(1):2002886, 2021.

[77] Pengfei Qi, Zhengyuan Zhang, Xue Feng, Puxiang Lai, and

Yuanjin Zheng. A symmetric forward-inverse reinforcement

framework for image reconstruction through scattering me-

dia. Opt. Laser Technol., 179:111222, 2024.

[78] Carolina Rendón-Barraza, Eng Aik Chan, Guanghui Yuan,

Giorgio Adamo, Tanchao Pu, and Nikolay I Zheludev.

Deeply sub-wavelength non-contact optical metrology of

sub-wavelength objects. APL Photonics, 6(6), 2021.

[79] Steve Reyntjens and Robert Puers. A review of focused ion

beam applications in microsystem technology. J. Micromech.

Microeng., 11(4):287, 2001.

[80] Yair Rivenson, Zoltán Göröcs, Harun Günaydin, Yibo Zhang,

Hongda Wang, and Aydogan Ozcan. Deep learning mi-

croscopy. Optica, 4(11):1437–1443, 2017.

[81] Herbert Robbins and Sutton Monro. A stochastic approxi-

mation method. Ann. Math. Stat., pages 400–407, 1951.

[82] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-

Net: Convolutional networks for biomedical image segmen-

tation. In MICCAI, 2015.

[83] Atreyee Saha, Salman Siddique Khan, Sagar Sehrawat, San-

jana S. Prabhu, Shanti Bhattacharya, and Kaushik Mitra.

LWGNet - learned wirtinger gradients for fourier ptycho-

graphic phase retrieval. In ECCV, 2022.

[84] Steffen J Sahl, Stefan W Hell, and Stefan Jakobs. Fluores-

cence nanoscopy in cell biology. Nature Rev. Mol. Cell Biol.,

18(11):685–701, 2017.

[85] Fahad Shamshad, Asif Hanif, Farwa Abbas, Muhammad

Awais, and Ali Ahmed. Adaptive Ptych: Leveraging image

adaptive generative priors for subsampled fourier ptychogra-

phy. In ICCV, 2019.

[86] Yuki Shimizu, Liang-Chia Chen, Dae Wook Kim, Xiuguo

Chen, Xinghui Li, and Hiraku Matsukuma. An insight into

optical metrology in manufacturing. Meas. Sci. Technol., 32

(4):042003, 2021.

[87] Ernst HK Stelzer. Beyond the diffraction limit? Nature, 417

(6891):806–807, 2002.



[88] Matteo Tomei, Marcella Cornia, Lorenzo Baraldi, and Rita

Cucchiara. Art2Real: Unfolding the reality of artworks via

semantically-aware image-to-image translation. In CVPR,

2019.

[89] Derek Tseng, Onur Mudanyali, Cetin Oztoprak, Serhan O

Isikman, Ikbal Sencan, Oguzhan Yaglidere, and Aydogan

Ozcan. Lensfree microscopy on a cellphone. Lab Chip, 10

(14):1787–1792, 2010.

[90] Knut W Urban. Is science prepared for atomic-resolution

electron microscopy? Nature Mater., 8(4):260–262, 2009.

[91] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In NeurIPS, 2017.

[92] Mary Grace M Velasco, Mengyang Zhang, Jacopo An-

tonello, Peng Yuan, Edward S Allgeyer, Dennis May, Ons

M’Saad, Phylicia Kidd, Andrew ES Barentine, Valentina

Greco, et al. 3D super-resolution deep-tissue imaging in

living mice. Optica, 8(4):442–450, 2021.

[93] V. Vemuri and Gyu-Sang Jang. Inversion of fredholm inte-

gral equations of the first kind with fully connected neural

networks. J. Franklin Institute, 329(2):241–257, 1992.

[94] Quoc Dang Vu, Simon Graham, Tahsin Kurc, Minh

Nguyen Nhat To, Muhammad Shaban, Talha Qaiser,

Navid Alemi Koohbanani, Syed Ali Khurram, Jayashree

Kalpathy-Cramer, Tianhao Zhao, et al. Methods for segmen-

tation and classification of digital microscopy tissue images.

Front. in Bioeng. Biotechnol., 7:433738, 2019.

[95] Benquan Wang, Yewen Li, Eng Aik Chan, Giorgio Adamo,

Bo An, Zexiang Shen, and Nikolay I Zheludev. Optical

localization of nanoparticles in sub-rayleigh clusters. In The

European Conference on Lasers and Electro-Optics, page

ch_p_8. Optica Publishing Group, 2023.

[96] Benquan Wang, Ruyi An, Eng Aik Chan, Giorgio Adamo,

Jin-Kyu So, Yewen Li, Zexiang Shen, Bo An, and Nikolay I

Zheludev. Retrieving positions of closely packed subwave-

length nanoparticles from their diffraction patterns. Appl.

Phys. Lett., 124(15), 2024.

[97] Hongda Wang, Yair Rivenson, Yiyin Jin, Zhensong Wei,

Ronald Gao, Harun Günaydın, Laurent A Bentolila, Comert

Kural, and Aydogan Ozcan. Deep learning enables cross-

modality super-resolution in fluorescence microscopy. Na-

ture Methods, 16(1):103–110, 2019.

[98] Hongda Wang, Hatice Ceylan Koydemir, Yunzhe Qiu, Bijie

Bai, Yibo Zhang, Yiyin Jin, Sabiha Tok, Enis Cagatay Yil-

maz, Esin Gumustekin, Yair Rivenson, et al. Early detection

and classification of live bacteria using time-lapse coherent

imaging and deep learning. Light Sci. Appl., 9(1):118, 2020.

[99] Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin

Huang, Ziming Liu, Payal Chandak, Shengchao Liu, Peter

Van Katwyk, Andreea Deac, et al. Scientific discovery in

the age of artificial intelligence. Nature, 620(7972):47–60,

2023.

[100] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,

Jan Kautz, and Bryan Catanzaro. High-resolution image

synthesis and semantic manipulation with conditional GANs.

In CVPR, 2018.

[101] Yu Wang, Eng Aik Chan, Carolina Rendón-Barraza, Yi-

jie Shen, Eric Plum, Kevin F MacDonald, Jun-Yu Ou, and

Nikolay I Zheludev. 3d positional metrology of a virus-like

nanoparticle with topologically structured light. Appl. Phys.

Lett., 124(22), 2024.

[102] Yu Wang, Eng Aik Chan, Carolina Rendón-Barraza, Yi-

jie Shen, Eric Plum, and Jun-Yu Ou. 2D super-resolution

metrology based on superoscillatory light. Adv. Sci., 11(38):

2404607, 2024.

[103] Martin Weigert, Loïc Royer, Florian Jug, and Gene My-

ers. Isotropic reconstruction of 3D fluorescence microscopy

images using convolutional neural networks. In MICCAI,

2017.

[104] Robert Witte, Vardan Andriasyan, Fanny Georgi, Artur Yaki-

movich, and Urs F Greber. Concepts in light microscopy of

viruses. Viruses, 10(4):202, 2018.

[105] Steffen Wolf, Manan Lalit, Katie McDole, and Jan Funke.

Unsupervised learning of object-centric embeddings for cell

instance segmentation in microscopy images. In ICCV,

2023.

[106] Richard Wombacher and Virginia W Cornish. Chemical

tags: applications in live cell fluorescence imaging. J. Bio-

photonics, 4(6):391–402, 2011.

[107] Heming Yao, Phil Hanslovsky, Jan-Christian Huetter,

Burkhard Hoeckendorf, and David Richmond. Weakly su-

pervised set-consistency learning improves morphological

profiling of single-cell images. In CVPR, 2024.

[108] Enze Ye, Yuhang Wang, Hong Zhang, Yiqin Gao, Huan

Wang, and He Sun. Recovering a molecule’s 3D dynamics

from liquid-phase electron microscopy movies. In ICCV,

2023.

[109] Zili Yi, Hao (Richard) Zhang, Ping Tan, and Minglun Gong.

DualGAN: Unsupervised dual learning for image-to-image

translation. In ICCV, 2017.

[110] Jing Zhang, Irving Fang, Hao Wu, Akshat Kaushik, Al-

ice Rodriguez, Hanwen Zhao, Juexiao Zhang, Zhuo Zheng,

Radu Iovita, and Chen Feng. LUWA dataset: Learning lithic

use-wear analysis on microscopic images. In CVPR, 2024.

[111] Kai Zhang, Wangmeng Zuo, Shuhang Gu, and Lei Zhang.

Learning deep CNN denoiser prior for image restoration. In

CVPR, 2017.

[112] Richard Zhang, Jun-Yan Zhu, Phillip Isola, Xinyang Geng,

Angela S. Lin, Tianhe Yu, and Alexei A. Efros. Real-time

user-guided image colorization with learned deep priors.

ACM Trans. Graph., 36(4):119:1–119:11, 2017.

[113] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and

Yun Fu. Residual dense network for image restoration. IEEE

Trans. Pattern Anal. Mach. Intell., 43(7):2480–2495, 2021.

[114] Yuelin Zhang, Pengyu Zheng, Wanquan Yan, Chengyu Fang,

and Shing Shin Cheng. A unified framework for microscopy

defocus deblur with multi-pyramid transformer and con-

trastive learning. In CVPR, 2024.

[115] Nikolay I Zheludev. What diffraction limit? Nature Mater.,

7(6):420–422, 2008.

[116] Ruofan Zhou, Majed El Helou, Daniel Sage, Thierry

Laroche, Arne Seitz, and Sabine Süsstrunk. W2S: mi-

croscopy data with joint denoising and super-resolution for

widefield to SIM mapping. In ECCV, 2020.



[117] Hongying Zhu, Serhan O Isikman, Onur Mudanyali, Alon

Greenbaum, and Aydogan Ozcan. Optical imaging tech-

niques for point-of-care diagnostics. Lab Chip, 13(1):51–67,

2013.

[118] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A.

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. In ICCV, 2017.

[119] Jinlong Zhu, Jiamin Liu, Tianlai Xu, Shuai Yuan, Zexu

Zhang, Hao Jiang, Honggang Gu, Renjie Zhou, and Shiyuan

Liu. Optical wafer defect inspection at the 10 nm technol-

ogy node and beyond. Int. J. Extreme Manuf., 4(3):032001,

2022.



A. Datasheet of Dataset

We follow the framework defined by Gebru et al. [27] and

provide the datasheet for the OpticalNet dataset.

A.1. Motivation

For what purpose was the dataset created? Who created

the dataset?

The OpticalNet dataset was created through a collaboration

between computer vision researchers and optical scientists

to address a fundamental challenge in optical imaging: the

diffraction limit, which physically prevents conventional

microscopes from resolving features smaller than half the

wavelength of light, rendering subwavelength structures in-

herently invisible to traditional optical observation. By pro-

viding the first general optical imaging dataset based on

the building block concept, where subwavelength square

units serve as fundamental building blocks for more com-

plex structures, this dataset aims to enable deep learning

approaches to overcome the diffraction limit using only tra-

ditional microscopy, providing a new pathway to explore

how AI can learn and generalize fundamental diffraction

optics. The dataset contains both experimental data collected

using a high-precision custom-built microscopy system and

simulated data generated through a computational frame-

work, serving dual purposes: establishing a benchmark for

evaluating vision algorithms in subwavelength imaging tasks

and providing a cost-effective pathway for validating new

methodologies prior to experimental implementation.

Who funded the creation of the dataset?

Singapore National Research Foundation (Grant No. NRF-

CRP23-2019-0006)

A.2. Composition

What do the instances that comprise the dataset repre-

sent?

All instances within the dataset are images. Additionally, we

provide an open-source simulation framework for generating

synthetic samples.

How many instances are there in total (of each type, if

appropriate)?

Please refer to Section 3 in the main paper.

Does the dataset contain all possible instances or is it

a sample (not necessarily random) of instances from a

larger set?

The dataset contains all possible instances.

Is there a label or target associated with each instance?

Yes. Each instance in the dataset includes a corresponding

target in the form of an object map, which serves as the

ground truth for each diffraction image.

Is any information missing from individual instances?

No.

Are relationships between individual instances made ex-

plicit (e.g., users’ movie ratings, social network links)?

Yes. We provide metadata for the spatial information of

diffraction images that are imaged from real objects.

Are there recommended data splits (e.g., training, devel-

opment/validation, testing)?

Yes. Training is conducted using the block dataset, which is

designed to validate the building block concept.

Are there any errors, sources of noise, or redundancies

in the dataset?

The dataset’s quality is ensured through comprehensive sta-

bilization measures (vibration isolation system and acoustic

chamber) and precise position calibration (better than 10 nm

accuracy using reference markers). Please refer to Appendix

C for details.

Is the dataset self-contained, or does it link to or oth-

erwise rely on external resources (e.g., websites, tweets,

other datasets)?

The dataset is self-contained.

Does the dataset contain data that might be considered

confidential?

No.

Does the dataset identify any subpopulations (e.g., by age,

gender)?

No.

Does the dataset contain data that, if viewed directly,

might be offensive, insulting, threatening, or might oth-

erwise cause anxiety?

No.

A.3. Collection Process

The detailed collection procedure, preprocessing, and clean-

ing are explained in Section 3 and Appendix C.

Who was involved in the data collection process (e.g.,

students, crowdworkers, contractors), and how were they

compensated (e.g., how much were crowdworkers paid)?

The data is collected by the authors.

Over what timeframe was the data collected?

The data is collected over the period from November 2023

to August 2024.

Were any ethical review processes conducted?

No.

A.4. Uses

Has the dataset been used for any tasks already?

Yes. We have used the OpticalNet dataset for benchmarking.

Please refer to Section 5 in the main paper.

Is there a repository that links to any or all papers or

systems that use the dataset?

Yes.

What (other) tasks could the dataset be used for?

Our dataset is primarily intended to explore deep learning

methods for a fundamental optical science task, i.e., over-

coming the diffraction limit with a conventional microscopy



model. Beyond its primary purpose in subwavelength imag-

ing, our dataset offers broad applications across scientific

research and computer vision domains. In semiconductor

metrology, it enables non-invasive quality control and defect

detection at nanoscale precision, presenting a cost-effective

alternative to electron microscopy for chip inspection. The

dataset’s structured representation of fundamental subwave-

length optical interactions can serve as a foundation for

enhancing resolution capabilities in various optical imag-

ing systems through transfer learning approaches, particu-

larly valuable for biological super-resolution tasks where

diffraction-limited challenges also exist, notably in the non-

invasive imaging of viruses such as SARS-CoV-2 in their

native state, which remains a critical challenge in current

microscopy techniques. From a computer vision perspective,

the dataset enables algorithm development and benchmark-

ing across both fundamental research and practical appli-

cations. At the algorithmic level, it provides a testbed for

inverse problem-solving, physics-informed neural networks,

and low-signal image reconstruction. These theoretical foun-

dations directly support practical applications, particularly

in mobile microscopy, where emerging smartphone imaging

modules strive for unprecedented magnification capabili-

ties. The dataset’s paired imaging data structure also makes

it valuable for developing general image enhancement al-

gorithms, especially in scenarios requiring the recovery of

high-quality images from degraded observations.

Are there tasks for which the dataset should not be used?

The dataset should not be used for any malicious or unethical

purposes.

A.5. Distribution

Will the dataset be distributed to third parties outside

of the entity (e.g., company, institution, organization) on

behalf of which the dataset was created?

Yes.

How will the dataset will be distributed (e.g., tarball on

website, API, GitHub)?

The dataset distribution will be released on our official

GitHub page at https://Deep-See.github.io/

OpticalNet.

Do any export controls or other regulatory restrictions

apply to the dataset or to individual instances?

No.

When will the dataset be released/first distributed?

The dataset will be released upon submission of the camera-

ready paper.

A.6. Maintenance

Who will be supporting/hosting/maintaining the dataset?

The dataset will be supported, hosted, and maintained by the

authors of the study.

How can the owner/curator/manager of the dataset be

contacted (e.g., email address)?

The owner can be contacted via the email address provided

on the dataset’s distribution website.

Is there an erratum?

No erratum is currently available. We will provide updates if

corrections or revisions are necessary.

Will the dataset be updated (e.g., to correct labeling er-

rors, add new instances, delete instances)?

Yes.

If the dataset relates to people, are there applicable limits

on the retention of the data associated with the instances

(e.g., were the individuals in question told that their data

would be retained for a fixed period of time and then

deleted)?

N/A.

Will older versions of the dataset continue to be sup-

ported/hosted/maintained?

Yes.

If others want to extend/augment/build on/contribute to

the dataset, is there a mechanism for them to do so?

N/A.

B. OpticalNet Image-to-Image Translation

To elucidate the inference stage to be able to translate ar-

bitrary shape objects with subwavelength features into dis-

cernable object images as shown in the right of Fig. 1, we

illustrate this process in Fig. A1. For large objects with

subwavelength features, we utilize a bidirectional scanning

technique, employing a stride of one scanning unit and a

two-dimensional square kernel of k units. This kernel size

k aligns with the Block GT dimension used during model

training. This method segments the object into sections each

spanning k scanning units, and each segment is then imaged

to produce its unique diffraction image. These diffraction

images are then input into the model, which predicts the

corresponding object images. These localized predictions

are then meticulously reassembled based on their scanning

coordinates to construct a complete, comprehensive object

image.

We summarize the whole workflow in Algorithm 1. Do

note that, to enhance computational efficiency, our implemen-

tation caches the model’s predictions since one prediction

may be associated with multiple diffraction images and used

for the object image computation.

C. Detailed Optical Imaging Process and

Dataset description

Details on the Optical Experiment. To obtain a high-

fidelity subwavelength optical imaging dataset, we demon-

strate an ultra-stable custom-built microscopy system uti-

lizing a coherent light source (λ = 633 nm) in a vertically-

assembled configuration with a magnification of ×155, corre-



Scanning

Diffraction Imaging +
AI model prediction

Spatial 
Rearrangment

Spatially 
decomposed 
object image

Model’s 
Prediction

(39,52)

(42,51)

(31,33)

(24,41)

(39,52)
(42,51)
(31,33)

(24,41)

Arbitrary shape object with 
Subwavelength feature

Comprehensive pixelate 
subwavelength imaging 

Scanning Coordinates:

Figure A1. For arbitrary shape objects with subwavelength features, we conduct a bidirectional scan, recording each 2D scanning coordinate.

This process spatially decomposes the object into segments, each imaged to produce an array of unsolved diffraction images, as illustrated in

Fig. 3(d). Our model then predicts the object image for each segment. Finally, these predicted images are reassembled according to their

coordinates to form a comprehensive, discernable object image that represents the entire object.

Algorithm 1 Inference of an arbitrary-shaped microscopic

object to object image.

Require: Optical imaging setup with scanning unit Hscan×

Wscan and a scanning kernel k, trained neural network

model NN

Input: An arbitrary-shaped microscopic object O of size

H ×W ;

Output: An object image Y of object O;

Init: DiffrImgs← array[H/Hscan−k+1,W /Wscan−k+1];
for i ∈ [0, size(DiffrImgs,0)), j ∈ [0, size(DiffrImgs,1))
do

DiffrImgs[i, j]← SampleDiffraction(O, i, j);
end for

for i ∈ [0,H/Hscan), j ∈ [0,W /Wscan) do

LocalResults← array[];
for all xm ∈ X

′

(i,j) do

Gather xm from DiffrImgs;

Prediction←NN (xm);
Append(LocalResults,Prediction);

end for

y[i, j]← Stitch(LocalResults) by Eq. 4;

end for

Spatially construct y by the 2-dimensional indices to ob-

tain the final object image Y ;

sponding to an effective pixel size of 41.7 nm on the sample

plane. The illumination path comprises a high-extinction-

ratio linear polarizer that generates a linearly polarized ex-

citation beam, which is subsequently focused onto the sam-

ple through a high-numerical-aperture objective lens (100×,

NA = 0.9) mounted on a piezoelectric stage. The detection

scheme employs a symmetric configuration with an identical

collection objective (100×, NA = 0.9), followed by another

polarization analysis unit consisting of a linear polarizer.

This arrangement enables precise manipulation and anal-

ysis of both incident and scattered polarization states, al-

lowing for comprehensive characterization of polarization-

dependent light-matter interactions. The transmitted intensity

diffraction patterns are detected with a high-sensitivity sC-

MOS camera (Andor Neo) positioned in the far-field regime

(10λ away from the sample surface), which is fed into the

neural network. The entire optical path is mechanically sta-

bilized through a commercial vibration isolation system

(Herzan, TS-140), while the acoustic chamber (Herzan, the

Crypt) enclosing the whole optical setup significantly at-

tenuates environmental noise across the acoustic frequency

range. These comprehensive stabilization measures, together

with a high-precision piezoelectric positioning stage (Physik

Instrumente, P-562.6CD), enable long-term stable imaging

with minimal mechanical drift.

Fabrication of Samples. To generate the physical train-

ing dataset for our machine learning framework, we fabri-

cated subwavelength samples using focused ion beam (FIB)

milling, which enables the direct transfer of binary images

(ground truth images) into metallic thin films with nanoscale
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Figure A2. Architecture of the transformer model used for the experiments. As the diffraction image is only 64 × 64, we do not split the

image into multiple regions. We also modify the positional encoding as a global index that is used to learn the global information not related

to the local object images. Then, the diffraction images coupled with the global index are processed by a module in blue color 5 times,

including two Global-Local (GL) blocks, a core Attention block, and a Downsample block. Finally, the output by these modules is processed

by a head block including a 3-layer MLP to predict the final object image.

precision. The sample fabrication was performed on a 130-

nm-thick Au film supported by a glass substrate, chosen

for its optimal optical response and compatibility with our

imaging system. The fabrication process consisted of three

main steps: First, glass coverslips (2.4 mm × 1.2 mm) were

thoroughly cleaned through sequential ultrasonic treatment

in acetone, isopropyl alcohol, and deionized water to ensure

surface quality. Second, a 130-nm gold film was thermally

evaporated onto the substrate with a 5-nm chromium ad-

hesion layer to guarantee mechanical stability. Finally, the

binary patterns were transferred into the metal film using a

dual-beam FIB system (Helios NanoLab 650, FEI), where a

focused Ga+ ion beam operating at 30 keV with an 84 pA

current precisely milled the designated regions of the binary

patterns. The milling parameters (area dose: 15 mC/cm2,

pitch: 10 nm) were optimized to achieve high-fidelity pat-

tern transfer while maintaining the structural integrity of the

surrounding unmilled regions.

Positioning Accuracy of the Optical Imaging System. To

ensure precise spatial correspondence between the acquired

diffraction images and corresponding object image ground

truths, we implemented a rigorous position calibration pro-

tocol. The protocol utilizes a reference array consisting of

9 × 9 circular markers (diameter: 500 nm, pitch: 2 µm) fab-

ricated simultaneously with positioning markers during the

FIB milling process. This calibration pattern compensates

for systematic distortions in the FIB writing field and estab-

lishes absolute spatial references. The position calibration

was performed by comparing the measured positions of the

reference array particles relative to the markers against their

nominal coordinates in the CAD design. By analyzing the

observed position offsets while translating the sample stage

to the designed array positions, we established a compre-

hensive spatial correction map. This calibration procedure

achieved positioning accuracy better than 10 nm. The cal-

ibrated coordinate system, accounting for both systematic



offsets and sample tilt, was then used to precisely position

the beam during the acquisition of diffraction patterns from

the actual samples.

To summarize, this meticulously designed optical imag-

ing setup has enabled us to capture high-quality diffraction

images, forming the basis of our dataset. In the following

subsections, we present additional statistics of our dataset

and explain the reasoning behind the full-black compensa-

tion.

C.1. Additional Dataset Statistics of Simulation
Data

We present the distribution of the number of white squares

within the object image of the simulation Block dataset we

have used in Fig. A3.
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Figure A3. Distribution of the number of white squares within an

object image of the simulation Block dataset. The bar in orange

represents the additional all-black images for the model to learn to

discriminate the environmental noise detailed in Appendix C.2.

C.2. Fullblack Compensation

A fundamental challenge in subwavelength imaging is pre-

cise positioning during scanning since these subwavelength

structures are inherently invisible under conventional mi-

croscopy. Our solution employs visible reference markers

(500 nm diameter circular markers described above) fabri-

cated alongside the sample, serving as spatial calibration

points. Starting from these visible markers, our scanning

protocol follows a serpentine path toward the sample region.

During this scanning process, the light beam initially tra-

verses unpatterned substrate regions between markers and

block samples, naturally generating diffraction images corre-

sponding to the pure background (all-black object images).

As the scanning approaches the sample boundary, the likeli-

hood of capturing sample features within the ground truth

window varies with window size. A 3×3 window may still

be entirely in the background region, while a 7×7 window,

covering a larger area, is more likely to include some sample

features at the same scanning position. This spatial rela-

tionship directly manifests in the distribution of all-black

images—they appear most frequently in 3×3 datasets and

decrease progressively in 5×5 and 7×7 datasets. This com-

pensation corresponds to the orange color bar representing

the additional numbers of full-black samples present.
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ResNet-34
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Figure A4. Predictions of ResNet-34 and the transformer on regions

of interest of the Light experiment dataset.

D. Experiment Details

D.1. Details of the Metrics

We employ the accuracy, the F1-score, and the Jaccard Index

as metrics to measure how well the raw predictions by the

models match with the ground truth, with all three metrics av-

eraged across classes to ensure a balanced evaluation. Upon

receiving the diffraction image as input, the model outputs

the predicted object image, which is tested against the test

split for the Block dataset, as well as for the SS and Light

datasets, with results quantified using the aforementioned

metrics. Higher values in these metrics indicate a stronger

capability of the models in accurately translating diffraction

images into their corresponding object images.

D.2. Details of the Implementation

We train the models using the Adam optimizer [46] with

β = (0.9,0.999) and ϵ = 1e − 8. The learning rate is initially

set at 1e-3 and is adjusted with a linear decay scheme with

a factor of 0.9 every 30 epochs. The threshold parameter λ

from Eq. 3 is set to 0.5. Training is conducted over a total of

500 epochs.

U-Net-based models used for the experiments are struc-

tured with convolutional blocks with ReLU activation and

batch normalization, utilizing residually connected upsam-

pling layers or convolutional blocks following attention

mechanisms for upsampling to the dimension of object im-

ages. ResNet-based models utilize ResNet architecture’s

convolutional layers to extract latent features, followed by a

sequence of transposed convolution layers to upsample these
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Figure A5. Regions of interest analysis on Light for SS for models

trained on 3 × 3, 5 × 5, and 7 × 7-dimension GT respectively.

features to output the predicted object images.

For the transformer that yields the overall superior results

on both simulation and experiment datasets, we provide a

detailed network architecture in Fig. A2. There is a novel

global-local (G-L) block in the transformer, which projects a

global index (set as 10 in this work) into a scale w and a shift

b parameters, simulating the influence of the environmental

noise. The scale w and the shift b calibrate the diffraction

images by interacting with its hidden layer output h as h←

(w+1)×h+b. Additionally, the core attention block employs

a flash attention [21] method to enhance the computation

efficiency.

The code of these vision algorithms together with the

simulation framework would be open-sourced when the work

is public.

E. More Benchmarking Analysis

To further investigate the benchmarking results, we present

additional analysis in this section. The disparity in the

ResNet-based approach and the transformer can be observed

in further examination of a few regions of interest of the

Light dataset presented in Fig. A4. Here, predictions by

ResNet-34 generally introduce more noise than those pro-

duced by the transformer. Both models predict the object

localization of simple, bold curves well in the first region of

interest (row 1), demonstrating competency in handling ba-

sic geometric, broader-scaled shapes. In the second region of

interest (row 2), ResNet struggles with finer, thinner patterns,

predicting them as the background. For extremely intricate

internal detail, both models only achieve a level of clarity

that allows basic visual recognition. For example, while the

upper part of the letter “g” is discernible, but not the very

thin curvatures located at the bottom of the region of interest.

Additionally, We further analyzed detailed crops of the

Siemens Star from models trained on varying ground truth

dimensions, as highlighted in Fig. A5 and referenced glob-

ally in Fig. 9 from the main paper. It is observed that there

is a marked improvement in the models’ ability to resolve

thinner spokes closer to the center as the training dimensions

of the GT block increase. However, this is accompanied by

increased noise along the spokes and sporadic disruptions,

suggesting a trade-off between detail resolution and noise

introduction.

Lastly, inspecting the model’s prediction for the spatially

decomposed object image shown in Fig. A1, we observe

that the grid-wise predictions are capable of reflecting the

direction, size, and, to some extent, shape information of the

object that is being scanned for that particular diffraction

image, showing the promise for using blocks based training

to achieve imaging of arbitrary shape object.

F. Extension and Limitation:

F.1. Generalization on Broader Cases

Our technique shows generalization in various applications,

requiring i) sample material is opaque at the operating wave-

length (cost-effective thin-film deposition techniques can be

employed to convert half-opaque samples into opaque and

negate the phase adding from various samples), and the light

source remains coherent like common lasers; ii) objects’ 2D

geometric shape in a plane perpendicular to the light is of

size comparable to or exceeding the individual square size.

The replication cost can be economical upon satisfying these

two.

F.2. Gap Between Simulation and Realistic

Simulation employs idealized physical models with neces-

sary simplifications. Though it cannot fully capture real-

world complexities (various distortions and aberrations al-

tering the light wavefront in reality), it enables basic cost-

effective validation where results in Tab 2 & 3 of the main

text empirically show high correlations between simulated

and realistic performances, offering credible predictions of

experiments.


