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Supplementary Material

A1. Additional Training Details
In our experiment for obtaining prototype CAMs, we train our
model on a single NVIDIA RTX 3090 GPU with 24GB mem-
ory, using a batch size of 16. To ensure robust and consistent re-
sults, we adopt the same data augmentation strategies as previous
works, including random flipping, random scaling, and cropping,
as described in [3, 6]. When employing CLIP-ES [8] as baseline
methods, we first save the results from the CLIP-ES model before
training and then load the results during training to reduce compu-
tational costs, and all images are resized to 512 × 512. For pseudo
label generation in the PASCAL VOC 2012 dataset [4], we utilize
the IRN [1] post-processing method to refine the CAMs. How-
ever, due to the computational cost, we directly use DenseCRF [5]
as the post-processing method in the MS COCO 2014 dataset [7]
following SIPE [3] and SFC [14]. For further segmentation model
training, we employ ResNet101-based DeepLabV2 [2] and follow
the settings established by previous methods [11, 12].

A2. Additional Experimental Results
A2.1. Hyper-parameter Analysis
Threshold τ in Sec. 3.1. In the POT framework for WSSS, con-
fident feature vectors are partitioned into multiple clusters, which
are further employed to construct cluster prototypes as anchors for
the subsequent feature allocation stage. Therefore, it is essential
to set an appropriate threshold τ for selecting these confident fea-
tures. As shown in Fig. A1 (a), we demonstrate the impact of
different τ values on the performance of generated CAMs on the
PASCAL VOC 2012 train set. Specifically, we vary the thresh-
old from 0.6 to 0.8 with an interval of 0.05. The results indicate
that the highest mIoU is obtained when τ is set to 0.7. Increasing
τ beyond this value results in the exclusion of some foreground
pixels, thereby resulting in the cluster prototypes failing to ade-
quately capture the essential characteristics of these foreground
pixels. When generating prototype CAMs using cosine similarity,
some foreground regions cannot be fully activated. Conversely,
decreasing τ below 0.7 leads to the inclusion of background pix-
els, thereby resulting in the cluster prototypes capturing the char-
acteristics of a mixture of both foreground and some background
pixels. When generating prototype CAMs using cosine similarity,
such prototypes activate a higher proportion of background pixels.
Both of these two scenarios degrade the overall mIoU performance
of the model.
K for k-means clustering in Sec. 3.1. In our proposed frame-
work, confident features are partitioned into K clusters using the
k-means clustering technique. To evaluate the impact of different
K values on the performance of the generated CAMs, we conduct
a series of experiments on the PASCAL VOC 2012 train set as
illustrated in Fig. A1 (b). The results demonstrate that the perfor-
mance of the generated CAMs improves as K increases from 1 to
3, with the highest mIoU achieved when K is set to 3. Further

(a) Threshold � (b) K for k-means clustering

Figure A1. Effect of τ and K on the quality of generated CAMs on
the PASCAL VOC 2012 train set. τ is leveraged to select confident
features with CAM values above this threshold. K is the number
of clusters per class in the k-means clustering algorithm.

Method Sup. Time (hour) mIoU (%)

SIPECVPR’22 [3] I 10.1 68.8
PSDPMCVPR’24 [15] I + L 18.7 74.1
POT (Ours) I + L 11.3 76.1

Table A1. Training cost comparisons on PASCAL VOC 2012 val-
idation dataset. Methods are run on one NVIDIA RTX 3090 GPU.
Sup.: Supervision; I: Image-level labels; L: Large language model.

increasing K beyond 3 does not yield any significant performance
gains. Moreover, a larger K leads to a substantial increase in com-
putational cost. Therefore, K is set to 3 in this paper. These results
demonstrate the limitation of single-prototype methods and the ef-
fectiveness of multi-cluster activation proposed in our framework.

A2.2. Training Cost Comparisons
When integrating with CLIP-ES [8], both the image and text en-
coders are frozen. To further optimize computational resources,
we first save the results generated by CLIP-ES before training.
Subsequently, these saved results are loaded during training. De-
tailed integration procedures are provided in Sect. A3. Tab. A1 of-
fers a comparative analysis of the training time and performances
on the PASCAL VOC 2012 validation set among three different
methods. SIPE [3] is the first method to utilize a single proto-
type for each class per image to acquire prototype CAMs. Rely-
ing solely on image-level labels, SIPE achieves the shortest train-
ing time among the three methods. However, this approach also
demonstrates a notable performance gap, exhibiting a 7.3% lower
mIoU compared to our proposed method. In contrast, PSDPM [15]
integrates its method with CLIP-ES and adopts a two-round train-
ing strategy. The first round is dedicated to training a segmenta-
tion model, which is subsequently leveraged to assist in the pro-
totype generation process in the second round. This multi-round
approach leads to the longest training time among the compared
methods. Our method, however, not only reduces the training time
by 39.6% relative to PSDPM [15] but also achieves a 2.0% im-
provement in performance, highlighting its efficiency and effec-
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Figure A2. Illustration of the POT framework integrating to the CLIP-ES [8] model. Image and text prompts are separately fed into the
frozen CLIP encoders to extract their respective features. The features are then leveraged to generate initial GradCAMs [9], using the
gradients of calculating cosine similarity between them. These initial GradCAMs are subsequently refined using Sinkhorn normalization
following previous works [8, 13], resulting in CLIP-CAMs. Features from the training encoder, corresponding to the positions of confident
CLIP-CAM values, are partitioned into multiple clusters. Then, an optimal transport is constructed to allocate all features to these clusters.
This allocation process is guided by a marginal constraint, which uses cosine similarities between cluster prototypes and class prototypes
to ensure accurate allocation. Once the features are allocated, new prototypes are generated using all the features within each cluster in
the feature activation stage. These newly generated prototypes are used to activate their corresponding feature clusters. The activated
results are reweighted by the transport plan and combined to form the final CAM predictions. Additionally, an OT-based consistency loss
is applied between the CAM predictions and the classifier CAMs to optimize feature representations within the framework. For simplicity,
the process in the feature activation stage is demonstrated with a single class.

tiveness for generating robust CAM results in WSSS.

A3. Integration Details on CLIP-ES
CLIP-ES [8] explores leveraging Contrastive Language-Image
Pre-training models (CLIP) to localize different categories in
WSSS with image-level labels, demonstrating superior perfor-
mances. Further methods, such as [10, 15], integrate their meth-
ods into the CLIP-ES model and achieve significant performances.
However, CLIP-ES [8] is a training-free model, and we illustrate
the procedure of integrating our framework into the CLIP-ES [8]
in this section.

During training, the input image and text prompt are separately
fed into frozen CLIP encoders to generate corresponding features.
Then, cosine similarity is used to capture the correlation between
these features, with gradients in this process utilized to generate
the initial GradCAMs [9]. These CAMs are subsequently refined
using Sinkhorn normalization following previous works [8, 13],
resulting in CLIP-CAMs. The position indexes of confident CLIP-
CAMs (above the threshold τ ) are leveraged to select correspond-
ing features from a trainable encoder (i.e., ResNet50). These fea-

ture vectors are grouped into a fixed number of clusters for each
class in the first stage. The clusters capture the most critical char-
acteristics of their respective classes, and a cluster prototype is
generated for each of them to serve as an anchor for the subsequent
feature allocation. The second stage employs Optimal Transport
(OT) to allocate features to clusters. The resulting transport plan
provides the probability distribution for assigning each feature to
a specific cluster prototype established in the first stage, thereby
guiding the systematic allocation of feature vectors. In the fi-
nal stage, the cluster prototypes are updated based on the newly
allocated feature vectors, and features are activated individually
by calculating cosine similarities with their corresponding clus-
ter prototypes. In addition, an OT-based consistency loss is intro-
duced to maintain the consistency of the final activation results and
the classifier CAMs, which optimizes the feature representation
and provides an effective and bounded exploration of prototypes.

A4. Qualitative Results

We present a detailed visualization comparison of the pseudo-
label results obtained in the PASCAL VOC 2012 and COCO 2014
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Figure A3. Visualization of pseudo-label results in PASCAL VOC 2012 dataset. Our pseudo-labels are more complete than CLIP-ES [8].
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Figure A4. Visualization of pseudo-label results in COCO 2014 dataset. Our pseudo-labels are more complete than CLIP-ES [8].

datasets. To ensure a comprehensive evaluation, we selected a
diverse set of scenes encompassing various categories, including
persons, animals, plants, and transportation. As shown in Fig. A3
and Fig. A4, our results exhibit greater completeness and accuracy
compared to those generated by the CLIP-ES [8] model. These
visual examples highlight the robust performance of our frame-
work in accurately segmenting objects across different categories
and environments. The improved completeness and precision can
be attributed to the refined feature clustering and optimal trans-

port mechanisms employed in our framework. These techniques
enhance the capture of discriminative features, leading to more re-
liable and consistent segmentations. Moreover, the visual compar-
isons demonstrate the advanced capabilities of our framework in
recognizing and delineating diverse object categories under vary-
ing conditions, thereby validating its effectiveness in WSSS.
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