
Parallel Sequence Modeling via Generalized Spatial Propagation Network
–Supplementary Material–

Contents

A. Stable-Context Condition 2
A.1. Long-context Condition . 2
A.2. Stability Condition . 3
A.3. Guaranteeing Dense Pairwise Connections . 4

B. Attention Heatmaps of GSPN 4

C. CUDA Implementation 4

D. Limitation 5

E. Parallel Time and Memory Complexity Analysis 6

F. Details of the Overall Architecture 8

G. More Samples Generated from GSPN 8

1

A. Stable-Context Condition
In this section, we present comprehensive mathematical proofs for the Stable-Context Condition introduced in Section 3.2 in
the main paper. We revisit 2D linear propagation:

hc
i = wc

ih
c
i−1 + λc

i ⊙ xc
i , i ∈ [1, n− 1], c ∈ [0, C − 1] (1)

where i denotes the ith row and wi ∈ Rn×n denotes the tri-diagonal matrix associating it to the (i − 1)tj row. While λi

denotes a vector to weigh xi with element-wise product, it can also be formulated as a diagonal matrix with λi’s original
values being on the main diagonal. To expand Eq. (1), we denote H ∈ {hi}, i ∈ [0, N − 1], N = n2 as the latent space where
the propagation is carried out:

Hv =



I 0 · · · · · · 0
w2 λ2 0 · · · · · ·

w3w2 w3λ2 λ3 0 · · ·
...

...
...

. . .
...

...
... · · · · · · λN−1

Xv = GXv, (2)

Here, G is a lower triangular, N ×N transformation matrix relating X and H , and Xv and Hv are vectorized sequences
concatenating all the rows, i.e., [x0, x1, ..., xn−1] and [h0, h1, ..., hn−1], with length of N . We denote each n× n block as one
sub-matrix, on setting λ0 = I , the ith constituent n× n sub-matrix of Gij is:

Gij =


i∏

τ=j+1

wτλj , j ∈ [0, i− 1]

λj , i = j

(3)

Thus, Wij =
∏i

τ=j+1 wτ is crucial for maintaining dense connections between the elements in X and H . As noted in
the main paper, Wij =

∏i
τ=j+1 wτ must avoid collapsing to a matrix with a small norm to enable effective long-context

propagation. This ensures that hi can substantially contribute to hj even over extended intervals, preserving the influence of
distant elements. To achieve this, we design Wij to satisfy

∑n−1
j=0 Wij = 1, ensuring that each element in hi is a weighted

average of all the elements of x′
j = λjxj . This design guarantees that the information in the jth column is not diminished

when propagated to the ith column.

A.1. Long-context Condition

Theorem 1. If all the tridiagonal matrices wτ are row stochastic, then
∑n−1

j=0 Wij = 1 is satisfied.

Definition of Row Stochastic Matrix. A matrix T is row stochastic if:
• All elements are non-negative: Tij ≥ 0 for all i, j.
• The sum of the elements in each row is 1:

∑
j Tij = 1 for all i.

Proof. Let A and B be two n × n row stochastic matrices. We need to show that their product C = AB is also row
stochastic.
Non-negativity: Since A and B are both nonnegative, all elements of their product C are also nonnegative:

Cik =

n∑
j=1

AijBjk ≥ 0

because each Aij ≥ 0 and each Bjk ≥ 0.
Row Sum: We need to show that the sum of the elements in each row of C is 1. Consider the i-th row sum of C:

n∑
k=1

Cik =

n∑
k=1

n∑
j=1

AijBjk

By changing the order of summation:
n∑

k=1

Cik =

n∑
j=1

Aij

(
n∑

k=1

Bjk

)
Since B is row stochastic:

n∑
k=1

Bjk = 1

Therefore:
n∑

k=1

Cik =

n∑
j=1

Aij · 1 =

n∑
j=1

Aij

And since A is row stochastic:
n∑

j=1

Aij = 1

Hence:
n∑

k=1

Cik = 1

This shows that C = AB is row stochastic.

Induction for Multiple Matrices. To extend this result to the product of several row stochastic matrices, we proceed by
induction.
Base Case: The product of two row stochastic matrices is row stochastic, as shown above.
Inductive Step: Assume that the product of m row stochastic matrices w1w2 · · ·wm is row stochastic. We need to show that
w1w2 · · ·wmwm+1 is also row stochastic.

By the induction hypothesis, W = w1w2 · · ·wm is row stochastic. Since wm+1 is also row stochastic, the product Wwm+1

follows the properties proven above for the product of two row stochastic matrices.
Conclusion: By induction, the product of any finite number of row stochastic matrices is row stochastic. Since tridiagonal
matrices form a subset of such matrices, the proof applies to them as well. This ensures that

∑n−1
j=0 Wij = 1 holds for all i.

A.2. Stability Condition

Theorem 2. The stability of Eq. (1) is ensured when all matrices wτ are row stochastic.

By ignoring c for simplicity, we re-write Eq. (1), where each hk,i is computed as the following. We will use pk,i in the
proof of Theorem 2.

hk,i = λk,ixk,i +
∑
k∈N

pk,ihk,i−1 (4)

Proof. The stability of linear propagation refers to preventing responses or errors from growing unbounded and ensuring that
gradients do not vanish during backpropagation, as described in [1]. Specifically, for a stable model, the norm of the temporal
Jacobian ∂hi

∂hi−1
should be less than or equal to 1. In our case, this requirement can be met by ensuring that the norm of each

transformation matrix wi satisfies: ∥∥∥∥ ∂hi

∂hi−1

∥∥∥∥ = ∥wi∥ ≤ σmax ≤ 1,

where σmax denotes the largest singular value of wi. This condition ensures stability.
By Gershgorin’s Circle Theorem, every eigenvalue σ of a square matrix wi satisfies:

|σ − pi,i| ≤
n∑

k=1,k ̸=i

|pk,i|, i ∈ [1, n],

left-to-right top-to-bottom right-to-left bottom-to-top 4-directional scan

MLP

Figure 1. GSPN guarantees Dense Pairwise Connections via 3-way connection and 4-directional scanning, as introduced in Sec. 3.2 and
detailed in Sec. A.3. The scanning of each direction corresponds to a lower triangular affinity matrix. The finally full matrix is obtained
through a learnable linear aggregation, denoted as “MLP” in the figure.

which implies:

σmax ≤ |σ − pi,i|+ |pi,i| ≤
n∑

k=1

|pk,i|.

If wi is row stochastic, then:
n∑

k=1

|pk,i| = 1 for each row.

Thus:
σmax ≤ 1,

satisfying the stability condition. Making wτ row stochastic ensures that the norm constraint ∥wi∥ ≤ 1 holds, which provides
a sufficient condition for model stability, as presented in [1].

A.3. Guaranteeing Dense Pairwise Connections

In this section, we provide an intuitive rationale for selecting the 3-way connection, represented by a tri-diagonal matrix, as the
minimal structure needed for dense matrix production through multiplication. To propagate non-zero entries throughout a
matrix, sufficient connectivity is essential. Diagonal matrices, which have non-zero elements only on the main diagonal, fail to
propagate non-zero values to off-diagonal positions, resulting in products that remain sparse. Similarly, matrices with non-zero
elements limited to the main diagonal and one adjacent diagonal (e.g., upper or lower bi-diagonal matrices) restrict the spread
of non-zero entries, maintaining a banded structure even after multiplication.

In contrast, tri-diagonal matrices, with non-zero elements on the main diagonal as well as the adjacent upper and lower
diagonals, enable significant propagation of non-zero values during multiplication. This 3-way connection facilitates the
spread of non-zero entries beyond the initial three bands. When two tri-diagonal matrices are multiplied, their non-zero entries
extend further, and repeated multiplications lead to more comprehensive filling of the resulting matrix. Consequently, the
tri-diagonal structure represents the minimal configuration with sufficient off-diagonal connections to eventually produce a
dense matrix. This makes tri-diagonal matrices the simplest form capable of ensuring dense propagation in matrix products.

In Figure 1, we show the 3-way connection in 4 different directions. The scanning of each direction corresponds to a lower
triangular affinity matrix, i.e., G in Eq. (2). A full dense matrix is obtained through learnable aggregation via a linear layer, as
described in Sec. 4.2, guaranteeing dense pairwise connections with sub-linear complexity.

B. Attention Heatmaps of GSPN
The heatmap in Figure 2 presents a comprehensive analysis of our GSPN across four distinct directional scans, revealing a
pronounced anisotropic behavior. Each directional heatmap represents a unique lower triangular affinity matrix. An additional
aggregated heatmap provides a holistic view, synthesizing the directional insights into a unified representation that captures
long-context and dense pairwise connections through a 3-way connection mechanism.

C. CUDA Implementation
To help readers better understand the algorithm before diving into the CUDA implementation details, we first present a PyTorch
version of GSPN’s forward and backward passes in Algorithm 1. This high-level implementation illustrates the core logic that
will be parallelized in our CUDA kernels.

Input top-to-bottom bottom-to-top left-to-right right-to-left Avg

Figure 2. Illustration of heatmaps for the query patch (marked with an orange star) along different directions and the averaged results.

This pseudo-code shows a straightforward two-loop implementation in PyTorch style. While the outer loop over width
must be sequential due to dependencies, the inner loop over height can actually be parallelized since each h-index computation
within a column only depends on values from the previous column. This observation motivates our CUDA implementation,
which parallelizes the height dimension computation while maintaining the necessary sequential processing along the width
dimension.

We implement a highly-parallel computation for GSPN on CUDA-enabled GPUs, consisting of forward and backward
passes. The detailed process is shown in Algorithm 2 and Algorithm 3.

Forward Pass. For each position (n, c, h, w) in the 4D tensor, we compute three directional connections (diagonal-up,
horizontal, diagonal-down) using gates G1, G2, and G3. These operations are equivalent to matrix multiplication between
h and w dimensions (Figure 2). The computation is divided into g groups, where g = 1 indicates global GSPN, and g > 1
indicates local GSPN. The final hidden state H combines input transformation xhype = BX with directional connections
hhype.

Backward Pass. Gradients are computed for all inputs (X,B,G1, G2, G3) by reverse propagation. For each position,
gradients flow from future timesteps into hdiff . Input gradients Xdiff are computed via B values, while gate gradients
(G1diff , G2diff , G3diff) use error terms and previous hidden states.

Both passes leverage CUDA’s parallel processing by distributing computations across threads. As the inner loop operates in
parallel, GSPN’s complexity is determined by the outer loop, resulting in O(

√
N) complexity.

D. Limitation
The main limitation of the current GSPN framework lies in the optimization of memory access in our customized CUDA kernel
implementation. The hidden vector H , frequently accessed by multiple threads, is stored in global memory without utilizing
shared memory, leading to inefficient memory access patterns, increased latency, and higher contention for global memory
bandwidth, particularly at high resolutions. Additionally, the lack of coalesced memory access and reliance on redundant
index computations further degrade performance, especially as channel and batch sizes increase.

While efficiency analysis in Figure 1 highlights GSPN’s scalability, demonstrating significant advantages over transformer-
based and linear attention approaches for image resolutions beyond 2K, it reveals limited efficiency gains for low-resolution
inputs. This discrepancy stems from implementation inefficiencies in our CUDA kernel, such as suboptimal value access and
the absence of shared memory optimization. Addressing these bottlenecks is critical for fully leveraging GSPN’s theoretical
efficiency across a wider range of input sizes.

Algorithm 1 Pseudocode of GSPN in a PyTorch-like Style.

Input parameters:
X: Input feature tensor of shape (batch_size, channels, height, width)
B: Input transformation matrix of shape (batch_size, channels, height, width)
G1: Top-left gate weights controlling diagonal-up connections
G2: Left gate weights controlling horizontal connections
G3: Bottom-left gate weights controlling diagonal-down connections
All gates G1,G2,G3 have shape (batch_size, channels, height, width)

batch_size, channels, height, width = X.size()
H = torch.zeros_like(X)

for w in range(width):
for h in range(height):

Get current inputs
x_t = X[..., h, w] # Current input features
b_t = B[..., h, w] # Current transformation weight

if w > 0:
Top-left connection (h-1, w-1)
g1 = G1[..., h, w] if h > 0 else 0
h1_prev = H[..., h-1, w-1].clone() if h > 0 else 0
h1_gated = g1 * h1_prev if h > 0 else 0

Left connection (h, w-1)
g2 = G2[..., h, w]
h2_prev = H[..., h, w-1].clone()
h2_gated = g2 * h2_prev

Bottom-left connection (h+1, w-1)
g3 = G3[..., h, w] if h < height-1 else 0
h3_prev = H[..., h+1, w-1].clone() if h < height-1 else 0
h3_gated = g3 * h3_prev if h < height-1 else 0

h_sum = h1_gated + h2_gated + h3_gated
else:

h_sum = 0

H[..., h, w] = b_t * x_t + h_sum

return H

E. Parallel Time and Memory Complexity Analysis
In this section, we provide a detailed analysis of the computational complexity for various attention mechanisms and
propagation methods used in handling 2D data, focusing on their time and memory efficiency.

Softmax Attention. Softmax attention is the most classical attention model. It computes full pairwise interactions between
all N pixels in a 2D grid, resulting in a total sequential work of O(N2 · d), where d is the feature dimension. While its ideal
parallel time complexity is O(1) due to independent pairwise computations, practical parallel time complexity is O

(
N2·d
P

)
,

where P represents the number of available GPU cores, and its memory complexity is O(N2).

Linear Attention. Linear attention reduces complexity by computing Q(KTV), which avoids the need for full pairwise
interactions seen in softmax attention. This factorization allows for a linear computational cost of O(N · d), where N is the
total number of pixels or tokens, and d is the feature dimension. The total sequential work of O(N · d) arises because each
element in Q interacts with a transformed version of V (i.e., KTV), which can be computed in parallel across N . The ideal
parallel time complexity is O(1) because each computation for the final result can be theoretically performed independently
if there are enough processing cores. The practical parallel time, O

(
N ·d
P

)
, depends on the available GPU cores P , which

distribute the computation workload. Memory complexity is O(N · d), as only intermediate vectors for Q, K, and V need to
be stored during computation, making it significantly more efficient than softmax attention for large-scale data processing.

Algorithm 2 Forward Pass CUDA Implementation

Require: Input tensors X, B, G1, G2, G3
Require: width, kNItems
Ensure: Output tensor H

1: g = ⌈width / kNItems⌉
2: count = g × height × channels × num
3: for t = 0 to kNItems - 1 do
4: parfor index = 0 to count - 1 do
5: Calculate n, c, h, k from index
6: w = k × nitems + t
7: x data = X[n,c,h,w]
8: b data = B[n,c,h,w]
9: h1 = G1[n,c,h,w,h-1,w-1] × H[n,c,h-1,w-1]

10: h2 = G2[n,c,h,w,h,w-1] × H[n,c,h,w-1]
11: h3 = G3[n,c,h,w,h+1,w-1] × H[n,c,h+1,w-1]
12: h hype = h1 + h2 + h3
13: x hype = b data × x data
14: H[n,c,h,w] = x hype + h hype
15: end parfor
16: end for

Algorithm 3 Backward Pass CUDA Implementation

Require: Input tensors X, B, G1, G2, G3, H, H diff
Require: width, kNItems
Ensure: Output tensors X diff, B diff, G1 diff, G2 diff, G3 diff, H diff

1: g = ⌈width / kNItems⌉
2: count = g × height × channels × num
3: for t = 0 to kNItems - 1 do
4: parfor index = 0 to count - 1 do
5: Calculate n, c, h, k from index
6: w = width - 1 - k × nitems - t
7: h diff = H diff[n,c,h,w]
8: Update h diff with future timestep contributions
9: H diff[n,c,h,w] = h diff

10: X diff[n,c,h,w] = B[n,c,h,w] × h diff
11: B diff[n,c,h,w] = X[n,c,h,w] × h diff
12: G1 diff[n,c,h,w,h-1,w-1] = h diff × H[n,c,h-1,w-1]
13: G2 diff[n,c,h,w,h,w-1] = h diff × H[n,c,h,w-1]
14: G3 diff[n,c,h,w,h+1,w-1] = h diff × H[n,c,h+1,w-1]
15: end parfor
16: end for

Method Total Seq. Ideal Parallel TC Practical Parallel TC Tp MC
Softmax Attention O(N2 · d) O(1) O

(
N2·d
P

)
O(N2)

Linear Attention O(N · d) O(1) O
(
N ·d
P

)
O(N · d)

Mamba O(N · d) O(N) O(N · d) O(d)

GSPN-global O(4N · d) O(4
√
N) O

(
4N ·d
P

)
O(4

√
N · d)

GSPN-local O(4N ·d
g) O(4

√
N

g) O
(

4N ·d
g·P

)
O(4

√
N ·d
g)

Table 1. Complexity analysis for different attention mechanisms and propagation methods. “TC” denotes time complexity, and “MC”
denotes memory complexity.

Mamba. Mamba performs sequential pixel-to-pixel propagation, where each pixel depends on the result of its predecessor,
leading to a total sequential work complexity of O(N · d), where N is the number of pixels and d is the feature dimension.
While the strict sequential dependency limits parallelism across a single sequence, practical parallel time complexity can be
expressed as O

(
N ·d
P

)
when P processing units are utilized, particularly in scenarios where multiple sequences or batches

are processed concurrently. Memory complexity remains minimal at O(d), as only the current and previous pixel states need
to be stored. While Mamba is memory-efficient, its sequential nature within a single sequence makes it less scalable for
high-resolution 2D data compared to more parallel-friendly methods.

GSPN. GSPN processes data using line scan, where each pixel in a row/column depends only on its adjacent pixels from
the previous row/column through a tridiagonal matrix structure. This design leads to a total sequential work complexity
of O(4N · d), where N is the total number of pixels and d is the feature dimension. The ideal parallel time complexity
is O(4

√
N), as each row can be processed in parallel, but rows are processed sequentially. The practical parallel time is

O
(
4N ·d
P

)
. Memory complexity is O(4

√
N · d), as only the current and previous rows are stored during computation. GSPN’s

line-wise parallelism and reduced sequence length provide a balance between computational efficiency and scalability, making
it suitable for handling high-resolution 2D data more effectively than fully sequential methods like Mamba.

F. Details of the Overall Architecture
Image Classification. We implement a four-level hierarchical architecture for image classification. The initial stem module
processes the H ×W × 3 input through two consecutive 3× 3 convolutions (stride 2, padding 1). The first convolution outputs
half the channels of the second, with each convolution followed by LN and GELU activation. The subsequent levels implement
a progressive feature hierarchy, where levels 1-2 employ local GSPN blocks for efficient processing at higher resolutions
(H/4 × W/4, H/8 × W/8), while levels 3-4 utilize global GSPN blocks for contextual integration at lower resolutions
(H/16×W/16, H/32×W/32). Between levels, dedicated downsampling layers perform spatial reduction through 3× 3
convolutions (stride 2, padding 1) followed by LN, where each downsampling operation halves the spatial dimensions while
maintaining the hierarchical feature representation.

Table 2. Details of GSPN models for image classification. G = global GSPN, while L = local GSPN.

Model #Layers Hidden size MLP ratio Mixing type

GSPN-T [2, 2, 7, 2] [96, 192, 384, 768] [4.0, 4.0, 4.0, 4.0] [L, L, G, G]

GSPN-S [3, 3, 9, 3] [108, 216, 432, 864] [4.0, 4.0, 4.0, 4.0] [L, L, G, G]

GSPN-B [4, 4, 15, 4] [120, 240, 480, 960] [4.0, 4.0, 4.0, 4.0] [L, L, G, G]

Class-conditional Generation. We present an elegant and versatile architecture for class-conditional generation models in
Figure 3 (b). Specifically, GSPN parameterizes the noise prediction network ϵθ(xt, t, y), which estimates the noise introduced
into the partially denoised image, considering the timestep t, condition y, and noised image xt as inputs. The initial stage
transforms the input image into flattened 2-D patches, subsequently converting them into a sequence of tokens with dimension
D through linear embedding. Note that there is not learnable positional embeddings in the sequence. We explore patch sizes
of p = 2 in the design space but would hold for any patch size. Beyond noised image inputs, the model incorporates additional
conditional information such as noise timesteps t and conditions y like class labels or natural language. To integrate these,
we append the vector embeddings of timestep t and class condition as supplementary tokens in the input sequence. These
tokens are added to image tokens. The hidden states from the main branch and the skip branch are concatenated and linearly
projected before input to the subsequent GSPN module. The final GSPN module decodes the hidden state sequence into noise
prediction and diagonal covariance prediction, preserving the original spatial input dimensions. A standard linear decoder
applies the final layer normalization and linearly transforms each token, subsequently rearranging the decoded tokens to the
original spatial layout.

G. More Samples Generated from GSPN
We present additional qualitative results to demonstrate GSPN’s generation capabilities. Figure 3 showcases diverse high-
quality images generated by GSPN-XL for class-conditional generation. Furthermore, Figure 4 - Figure 6 display generation
results from our distilled GSPN models, trained on both SD-v1.5 and SD-XL. The samples exhibit comparable visual quality
to their transformer-based counterparts while benefiting from GSPN’s efficient architecture.

Table 3. Details of GSPN models for class-conditional generation. We follow DiT model configurations for the Base (B), Large (L) and
XLarge (XL) variants. Steps/sec is measured on ImageNet 256×256 generation with patch size equal to 2 with an A100.

Model #Layers Hidden size #Params (M) Steps/s

GSPN-B 30 900 137 2.78
GSPN-L 56 1200 443 1.15
GSPN-XL 56 1500 690 0.88

G
S

P
N

-X
L

Figure 3. Qualitative results of class-conditional generation from our 256×256 resolution GSPN-XL/2 models. To ensure consistency with
the quantitative results reported in the paper, classifier-free guidance was NOT applied to any of the outputs.

S
D

-X
L

4096 x 2048

S
D

-v
1
.5

4096 x 4096 2048 x 2048

2048 x 2048 2048 x 2048

2048 x 2048 2048 x 2048

2048 x 2048

4096 x 4096 4096 x 4096 4096 x 4096

2048 x 2048

4096 x 4096 4096 x 40964096 x 4096 4096 x 4096

8192 x 8192

4096 x 4096

2048 x 2048

Figure 4. Examples of GSPN at various higher resolutions based upon SD-v1.5 and SDXL. GSPN enable to synthesize images up to a
resolution of 16384×8192 using a single A100. Best viewed in PDF with zoom.

S
D

-X
L

4096 x 2048

16384 x 8192

4096 x 4096 4096 x 4096 2048 x 2048

4096 x 2048 2048 x 2048

Figure 5. Examples of GSPN at various higher resolutions based upon SDXL. GSPN enable to synthesize images up to a resolution of
16384×8192 using a single A100. Best viewed in PDF with zoom.

S
D

-X
L

8192 x 8192

16384 x 8192

8192 x 8192 2048 x 2048

2048 x 2048

2048 x 2048

Figure 6. Examples of GSPN at various higher resolutions based upon SDXL. GSPN enable to synthesize images up to a resolution of
16384×8192 using a single A100. Best viewed in PDF with zoom.

References
[1] Sifei Liu, Shalini De Mello, Jinwei Gu, Guangyu Zhong, Ming-Hsuan Yang, and Jan Kautz. Learning affinity via spatial propagation

networks. NeurIPS, 2017. 3, 4

	. Stable-Context Condition
	. Long-context Condition
	. Stability Condition
	. Guaranteeing Dense Pairwise Connections

	. Attention Heatmaps of GSPN
	. CUDA Implementation
	. Limitation
	. Parallel Time and Memory Complexity Analysis
	. Details of the Overall Architecture
	. More Samples Generated from GSPN

