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Appendix
The supplementary material includes the following addi-
tional information:
• Sec. A provides more implementation details for PAR.
• Sec. B demonstrates the compatibility of our approach

with typical LLM engineering optimizations.
• Sec. C provides more visualization results, including

zero-shot high-resolution generation and long-range de-
pendency examples.

• Sec. D provides the analysis of visual token dependen-
cies.

A. Implementation details for PAR
Image Generation. For image generation, we train our
models on the ImageNet-1K [10] training set, consisting
of 1,281,167 images across 1,000 object classes. Follow-
ing the setting in LlamaGen [51], we pre-tokenize the entire
training set using their VQGAN [12] tokenizer and enhance
data diversity through ten-crop transformation. For infer-
ence, we adopt classifier-free guidance [16] to improve gen-
eration quality. The detailed training and sampling hyper-
parameters are listed in Tab. 5.

config value
training hyper-params

optimizer AdamW [30]
learning rate 1e-4(L,XL)/2e-

4(XXL,3B)
weight decay 5e-2
optimizer momentum (0.9, 0.95)
batch size 256(L,XL)/ 512(XXL,3B)
learning rate schedule cosine decay
ending learning rate 0
total epochs 300
warmup epochs 15
precision bfloat16
max grad norm 1.0
dropout rate 0.1
attn dropout rate 0.1
class label dropout rate 0.1

sampling hyper-params
temperature 1.0
guidance scale 1.60 (L) / 1.50 (XL) /

1.435 (XXL) / 1.345 (3B)

Table 5. Detailed Hyper-parameters for Image Generation.

Video Generation. For video generation, we train our mod-

els on the UCF-101 [48] training set, which contains 9.5K
training videos spanning 101 action categories. Videos are
processed as 8fps random clips and tokenized by our reim-
plementation of MAGVIT-v2 [71] (as their code is not pub-
licly available), achieving a reconstruction FVD score of
32 on UCF-101. For inference, we use classifier-free guid-
ance [16] with top-k sampling to improve generation qual-
ity. The detailed training and sampling hyper-parameters
are listed in Tab. 6.

config value
training hyper-params

optimizer AdamW [30]
learning rate 1e-4
weight decay 5e-2
optimizer momentum (0.9, 0.95)
batch size 256
learning rate schedule cosine decay
ending learning rate 0
total epochs 3000
warmup epochs 150
precision bfloat16
max grad norm 1.0
dropout rate 0.1
attn dropout rate 0.1
class label dropout rate 0.1

sampling hyper-params
temperature 1.0
guidance scale 1.15
top-k 8000

Table 6. Detailed Hyper-parameters for Video Generation.

B. Compatibility with Typical LLM Engineer-
ing Optimizations

We investigate whether our algorithmic parallel genera-
tion approach can complement typical engineering opti-
mizations used in LLM inference. All experiments were
conducted on a single NVIDIA A100 GPU with batch
size 1, generating 384×384 resolution images. For sim-
plicity, we only implemented PyTorch’s compile feature
(leveraging CUDA graph optimization) in our PAR model.
As a comparison point, we tested LlamaGen [51] with
vLLM [23] optimizations, which includes both page atten-
tion and CUDA graph optimizations.

As shown in Tab. 7, our algorithmic improvements and
engineering optimizations are orthogonal and provide com-



Model Resolution Optimization Latency

LlamaGen-3B 384 none 12.41s
LlamaGen-3B 384 vLLM 4.12s
PAR-3B-4x 384 none 3.46s
PAR-3B-4x 384 compile 1.15s
PAR-3B-16x 384 compile 0.43s

Table 7. Compatibility with LLM engineering optimizations.
Even with just PyTorch compile optimization, our PAR approach
achieves substantial speedups compared to LlamaGen with more
comprehensive vLLM optimizations.

Figure 6. Zero-shot generation at 512×512 resolution. Our
model successfully generates coherent high-resolution images de-
spite being trained at 384×384 resolution.

plementary benefits. Even without any engineering opti-
mization, PAR-3B-4x (3.46s) outperforms LlamaGen-3B
with comprehensive vLLM optimizations (4.12s). When
implementing just the simple CUDA graph optimization
through PyTorch compile, PAR-3B-4x achieves 1.15s la-
tency, a 3.6× improvement over optimized LlamaGen. With
more aggressive parallelization, PAR-3B-16x with com-
pile further reduces latency to 0.43s, demonstrating our
approach’s flexibility in speed-quality trade-offs. These
results confirm that algorithm-level optimizations (reduc-
ing sequential steps) and engineering-level optimizations
(improving computational efficiency) are orthogonal ap-
proaches that, when combined, maximize generation effi-
ciency beyond what either can achieve alone.

C. More Visualization Results
Zero-shot Generation on Higher Resolutions. Fig. 6
demonstrates our model’s capability for zero-shot genera-
tion at higher resolutions (512×512) using Rotary Position
Embedding [50]. Despite being trained on 384×384 images,
our approach effectively maintains coherent global struc-
tures and detailed local patterns in higher resolution gener-
ation. This shows the flexibility of our parallel generation
framework and its compatibility with positional encoding
methods that support resolution extrapolation.
Long-range Dependency Handling While our approach
leverages the observation that spatially distant tokens typ-

Figure 7. Long-range dependency handling. Our method suc-
cessfully maintains consistency between distant but strongly re-
lated elements (highlighted regions), even when generating tokens
from different spatial regions in parallel.

ically have weaker dependencies, certain visual elements
exhibit strong long-range dependencies. Fig. 7 showcases
our model’s ability to maintain consistency between distant
but strongly dependent visual elements, such as symmetric
features (deer antlers, vehicle wheels) and coherent struc-
tures across the image.
Addtional Image Generation Visualization. In Fig.8
and Fig.9, we provide additional visualization results of
PAR-4⇥ and PAR-16⇥ image generation on ImageNet [10]
dataset, respectively.
Addtional Video Generation Visualization. In Fig.10, we
provide the visualization results of video generation using
our model on the UCF-101[48] dataset. The results are sam-
pled from 128×128 resolution videos with 17 frames. As
shown in the figure, even with 16× parallelization (PAR-
16⇥), our method shows no obvious quality degradation
compared to single-token prediction (PAR-1⇥), producing
smooth motion and stable backgrounds across frames.

D. Analysis of Visual Token Dependencies
In Sec.3.1, we demonstrated through pilot studies that par-
allel generation of adjacent tokens leads to quality degrada-
tion due to strong dependencies, while tokens from distant
regions can be generated simultaneously. In this section,
we provide a theoretical perspective of conditional entropy
to explain this observation and our design. We use condi-
tional entropy to measure the token dependencies quantita-
tively - lower conditional entropy between tokens indicates
stronger dependency, while higher conditional entropy sug-
gests weaker dependency and thus potential for parallel gen-
eration. We further validate our PAR design from the per-
spective of conditional entropy - In AR-based generation,
each step predicts a conditional distribution of the next to-
kens given all previous tokens. Higher conditional entropy
indicates higher difficulty for the model to predict the next
tokens. In this section, we first introduce the estimation of
conditional entropy in Sec.D.1, and then validate our pro-
posed approach by analyzing the relationship between to-



Figure 8. Additional image generation results of PAR-4⇥ across different ImageNet [10] categories.

Figure 9. Additional image generation results of PAR-16⇥ across different ImageNet [10] categories.
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Figure 10. Video generation results on UCF-101 [48]. Each row shows sampled frames from a 17-frame sequence at 128×128 resolution,
generated by PAR-1⇥, PAR-4⇥, and PAR-16⇥ respectively across different action categories.



ken dependencies and spatial distances in Sec. D.2.

D.1. Conditional Entropy Estimation
Given a visual token sequence {v1, v2, ..., vn}, our goal is to
estimate the conditional entropy H(vk|{vj}j<k) where the
token feature vi 2 Rd and {vj}j<k is the set of (all) visual
tokens that precede vk in the sequence. This conditional
entropy measures the uncertainty of the current token vk

given the previously occurring visual tokens, thereby char-
acterizing the dependency between vk and the set {vj}j<k.
It is important to emphasize that we do not require the ex-
act value of H(vk|{vj}j<k). Instead, we aim to reflect the
trends in H(vk|{vj}j<k) under different scenarios, such as
given different sets of {vj}j<k and considering different po-
sitions of vk given the same set of {vj}j<k.

In particular, we characterize the relationship between
the token vk and the previous ones as the following model

vk = f({vj}j<k) + ✏k (4)

where vk is the next token we focus on and {vj}j<k is the
conditioning token(s), f(·) is a deterministic function, and
✏k is the random additive error term. Then the conditional
entropy H(vk|{vj}j<k) satisfies

H(vk|{vj}j<k) = H(f({vj}j<k) + ✏k|{vj}j<k)

= H(✏k|{vj}j<k), (5)

where the second equation holds since f(·) is a determinis-
tic function. However, exactly calculating H(✏k|{vj}j<k)
is intractable as we cannot access the entire data distribu-
tion. To this end, inspired by prior research on bounding
techniques for entropy and mutual information estimation
[1, 2, 32, 33, 54, 62], we seek their upper bound as a proxy
for showing the trends of the conditional entropy for differ-
ent tokens. In particular, we have

H(✏k|{vj}j<k)  H(✏k) 
1

2
log((2⇡e)d|⌃|), (6)

where ⌃ denotes the covariance matrix of ✏k. Notably, the
first inequality naturally holds and the second inequality fol-
lows from the maximum entropy theory [9, 19], which is
achievable when ✏k follows a Gaussian distribution.

Based on Eq. 6, we can estimate the trend of conditional
entropy changes by calculating the determinant of the resid-
ual covariance matrix, i.e., |⌃|. In order to obtain the addi-
tive errors ✏, we consider training a parameterized model
f✓(·) to get the function f and characterize ✏ as the residual
errors. The detailed algorithm is provided in Algorithm 1.

D.2. Entropy Analysis on ImageNet Data and PAR
Based on the conditional entropy estimation method intro-
duced above, we conduct experiments on ImageNet to an-
alyze token dependencies and validate our parallel genera-
tion strategy. We randomly sample 10,000 images from Im-
ageNet [10] and extract their features using VQGAN [12]

Figure 11. Visualization of token conditional entropy maps. Each
map shows the conditional entropy of all tokens when conditioned
on a reference token (blue square). Darker red indicates lower con-
ditional entropy and thus stronger dependency with the reference
token. The visualization shows that tokens exhibit strong depen-
dencies with their spatial neighbors and weak dependencies
with distant regions.

Algorithm 1 Conditional Entropy Estimation
Input:

1: m: number of data points
2: {vi,1, vi,2, ..., vi,n}mi=1: visual token sequences, where

each vi,j 2 Rd

3: k: index of the target token
4: f✓: parameterized model

Output: Estimated conditional entropy Ĥ(vk|{vj}j<k)
5: Initialize empty lists X and Y
6: for i = 1 to m do
7: Xi  {vi,j}j<k

8: Yi  vi,k

9: Append (Xi, Yi) to (X ,Y)
10: end for
11: Train a model f✓ to estimate Y given X using (X ,Y)
12: Initialize empty list E for residuals
13: for (X,Y ) in (X ,Y) do
14: Ypred  f✓(X)
15: ✏k  Y � Ypred

16: Append ✏k to Ek
17: end for
18: Compute residual covariance matrix ⌃̂ of Ek
19: Ĥ(vk|{vj}j<k) 1

2 log((2⇡e)
d|⌃̂|)

20: return Ĥ(vk|{vj}j<k)

encoder, followed by vector quantization to obtain continu-
ous features from the codebook.

We first analyze the dependencies between tokens at dif-
ferent positions. For each position j in the feature map,
we calculate the conditional entropy H(vi|vj) where i 6= j,
given the token vj at the j-th position and considering all to-
kens vi at other positions. It should be noted that Algorithm
1 is not limited to H(vk|{vj}j<k) where the given visual
tokens {vj} must satisfy j < k. This is because any given
tokens vj and vi can be considered to satisfy Eq. 4, mak-
ing the proposed method applicable in calculating H(vi|vj).
Fig. 11 presents the experimental results. We observe that
given different token positions vi, the adjacent tokens typ-
ically exhibit lower conditional entropy (shown in redder
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Figure 12. Conditional entropy differences between parallel
and sequential generation in different orders. (a)(d) show par-
allel (4 tokens) generation strategies and (b)(e) show sequential
generation strategies for our proposed order and raster scan or-
der respectively. Numbers indicate generation step in each order.
(c)(f) visualize the conditional entropy increase when switching
from sequential to parallel generation for each order, where darker
red indicates larger entropy increase and thus higher prediction
difficulty. Both orders generate the first four tokens sequentially
(shown as white regions in entropy maps). Our proposed order that
generates tokens from different spatial blocks in parallel shows
smaller entropy increases compared to raster scan order that gen-
erates consecutive tokens simultaneously, indicating parallel gen-
eration across spatial blocks introduces less prediction difficulty
than generating adjacent tokens simultaneously.

colors). This indicates that the dependencies between adja-
cent tokens are stronger compared to the dependencies be-
tween tokens that are farther apart in position. This obser-
vation aligns with the spatial locality in visual data, where
nearby regions have stronger correlations than distant ones.

Next, we analyze how different token ordering strategies
affect the difficulty of parallel generation in Fig. 12. To sim-
ulate the prediction difficulty during generation, we com-
pute each token's conditional entropy given all its previous
tokens - higher conditional entropy indicates more uncer-
tainty and thus higher prediction difficulty at that position.
By comparing the conditional entropy difference between
sequential (one token at a time) and parallel generation (pre-
dicting multiple tokens simultaneously), we can quantify
the increased difficulty introduced by parallel generation at
each position. We conduct experiments with 4-token paral-
lel prediction under two ordering strategies: our proposed
generation order that first generates the initial four tokens
sequentially to establish global structure, then generates to-
kens from different spatial blocks in parallel, and the raster
scan ordering that directly predicts consecutive tokens si-
multaneously after the initial four tokens.

For our proposed order, we aim to characterize the en-
tropy increase caused by the parallel generation, when com-
pared to the entirely sequential generation methods. In par-

ticular, let v(r)
k

be the token at position k in region r, we de-
fine Vseq

k,r
and Vpar

k,r
by the sets of the previous tokens of v(r)

k

for sequential and parallel generations (see Fig. 12(a)(b)).
Then the conditional entropy of the sequential generation
(single-token) and parallel generation (multi-token) are de-
fined as H(v(r)

k
|Vseq

k,r
) and H(v(r)

k
|Vpar

k,r
). We characterize

the entropy increase caused by the parallel generation, i.e.,

H(v(r)
k

|Vpar
k,r

)�H(v(r)
k

|Vseq
k,r

). (7)

As a comparison, we also consider the raster scan order,
where the tokens are exactly arranged based on their posi-
tions, denoted as v1, v2, . . .. In this setting, given the current
token vk, we define Vseq

k
and Vpar

k
by the sets of the previ-

ous tokens of vk for sequential and parallel generations (see
Fig. 12(d)(e)). Then, we will also characterize the entropy
increase caused by the parallel generation in the raster scan
order, i.e.,

H(vk|Vpar
k

)�H(vk|Vseq
k

). (8)

The numerical results of (7) and (8) are presented in
Fig. 12(c) and (f). It can be seen that both orderings main-
tain identical conditional entropy for the first four tokens
due to the sequential generation. For subsequent tokens,
our proposed order leads to significantly smaller conditional
entropy increases compared to the raster scan order. This
indicates that when switching from sequential to parallel
generation, generating tokens from different spatial blocks
introduces less prediction difficulty than generating consec-
utive tokens in raster scan order. The result quantitatively
validates our design.
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