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Supplementary Material

In this supplementary material, we further present the
following descriptions and experiments to elaborate the re-
sults and conclusions addressed in the main paper.
• Section A: Detailed implementation specifications;
• Section B: Extended experimental results;
• Section C: Additional discussions for limitations, future

work and broader impacts;
• Section D: License and consent for public resources.

A. Detailed Implementation Specifications
A.1. Point-MAE-based Fine-tuning
We leverage the Point-MAE [4] pretrained model to per-
form object classification experiments on real-world data
(ScanObjectNN [6]) and synthetic data (ModelNet40 [7]).
The training settings are described on the left of Tab. A4,
following the pioneering work [4, 12]. All experiments are
conducted on a single GeForce RTX 3090 GPU.

A.2. ReCon-based Fine-tuning
Similarly, more recent Recon [5] pre-trained model is used
for few-shot learning experiments on ModelNet40 [7] and
part segmentation on ShapeNetPart [8]. The training set-
tings are detailed in the right half of Tab. A4, following the
general configurations [4, 11], with all training conducted
on a single GPU.

B. Extended Experimental Results
B.1. More Ablation Studies
Here we provide additional ablation experiments, adhering
to the same settings described in the main paper. Specifi-
cally, we utilize the Point-MAE [4] pre-trained model and
report fine-tuning results on the most challenging variant,
PB-T50-RS, of ScanObjectNN [6].
Ablation on multi-scale token selection. We first conduct
ablation experiments on the number of center points and
neighboring points in the multi-scale token selection pro-
cess. As shown in Tab. A1, these parameters influence the
amount of information encoded in the tokens, which subse-
quently affects token selection and fine-tuning performance.
For the two scales, we set these values at (128, 32) and
(64, 64), respectively.
Ablation on the loss weight for mask learning. We also
perform an ablation study on the loss weight λ of Lmask,
which balances the learning between Mask Predictor and
downstream tasks. As illustrated in Tab. A2, the incorpora-
tion of mask loss Lmask improves the quality of the selected

Table A1. Ablation study on the number of center points and
neighbor points in multi-scale token selection.

Scale 1 Scale 2 PB-T50-RS

(256, 16) (64, 64) 84.46

(256, 16) (128, 32) 84.66

(128, 16) (64, 32) 85.08

(128, 48) (64, 80) 83.90

(128, 32) (64, 64) 85.53

Table A2. Ablation on the loss weight for Mask Predictor learning.

Weight (λ) 0 0.002 0.004 0.006 0.008

PB-T50-RS 84.56 84.90 85.53 84.91 85.01

Table A3. Ablation study on the injected blocks for PointLoRA.

Blocks TP Ratio PB T50 RS

1 → 3 0.61 M 2.72% 83.83

1 → 6 0.66 M 2.96% 83.55

1 → 9 0.72 M 3.19% 85.05

4 → 12 0.72 M 3.19% 84.84

8 → 12 0.64 M 2.88% 84.14

1 → 12 0.77 M 3.43% 85.53

tokens, leading to improved classification accuracy. How-
ever, an excessively large λ for Lmask can disrupt the learn-
ing of the classification task, causing a slight performance
drop. To achieve the best accuracy, we set λ to 0.004.
Ablation on the injected blocks for PointLoRA. Follow-
ing DAPT [12], we also experimented with injecting the de-
signed components into only a subset of point cloud trans-
former blocks (L = 12 in total) to further reduce the num-
ber of tunable parameters. As shown in Tab. A3, limiting
injections to shallow or deeper blocks results in varying de-
grees of performance degradation. This could be attributed
to the fact that different blocks in the pre-trained model
capture critical information related to distinct aspects of
the input point cloud. Consequently, we choose to integrate
PointLoRA into the qkv projection and FFN lay-
ers of all blocks, leaving the investigation of block-specific
configurations for future research.

B.2. Part Segmentation Visualization
We visualize the results of part segmentation obtained using
the proposed approach, fine-tuned with the Recon [5] pre-
trained model in ShapeNetPart [8]. As illustrated in Fig. A1
and Fig. A2, a total of eight representative categories are
selected, with four viewpoints displayed for each category.



Table A4. Training settings for various downstream fine-tuning models and datasets used in our implementation.

Training Settings
Classification Segmentation

ScanObjectNN [6] ModelNet40 [7] ModelNet40 Few-shot [7] ShapeNetPart [8]

Pre-trained Model Point-MAE [4] Point-MAE [4] Recon [5] Recon [5]
Optimizer AdamW AdamW AdamW AdamW
Learning rate 5× 10−4 5× 10−4 5× 10−4 2× 10−4

Weight decay 5× 10−2 5× 10−2 5× 10−2 5× 10−2

Learning rate scheduler cosine cosine cosine cosine
Training epochs 300 300 150 300
Warm-up epochs 10 10 10 10
Batch size 32 32 4 16
Drop path rate 0.3 0.1 0.3 0.1
Selected token number 32 & 8 32 & 8 32 & 8 32 & 8

Number of points 2048 1024 1024 2048
Number of point patches 128 64 64 128
Point patch size 32 32 32 32

Our method demonstrates promising segmentation perfor-
mance across various categories while utilizing a minimal
number of tunable parameters.

C. Additional Discussions

C.1. Explanatory Experiments and Discussions

Large model experiments and necessity for PEFT. The
experiments in the main paper follow the common settings,
validating our approach on small-scale models (22.1M) for
fair comparison. This establishes a solid foundation for
the extension to larger-scale models. We further fine-tune
PointGPT-L [1, 3] (360.5M), the largest pre-trained model
for object-level point clouds, using proposed PointLoRA on
PB-T50-RS, As shown in Tab. A5, our method updates only
1.36% of parameters and outperforms full fine-tuning with
significantly reduced storage space.

About the technical novelty of PointLoRA. First, we re-
veal the effectiveness of LoRA in point cloud and its con-
nection to PointNet, which is overlooked in previous re-
search. Second, adhering to the principle of simplicity and
effectiveness, we design PointLoRA with multi-scale token
selection that requires only minimal parameters to achieve
SOTA performance. This simplicity and efficiency enable
seamless extension to larger models and diverse scenarios.

Theoretical analysis of LoRA for point cloud. LoRA
is well-suited for point clouds due to its alignment with
the principles underlying point cloud architectures like
PointNet. Both leverage efficient subspace representations:
PointNet adopts shared MLPs and pooling to approxi-
mate permutation-invariant set functions, while LoRA re-
duces fine-tuning updates with low-rank matrices. This syn-
ergy allows LoRA to effectively adapt to the sparse, high-
dimensional nature of point clouds to capture global fea-
tures with minimal computational overhead.

Table A5. Explanatory experiments on large model with the pro-
posed method.

Methods Tunable Params. Storage PB-T50-RS

PointGPT-L (Full-FT) 360.5 M 4.0 GB 93.4

+PointLoRA 4.9 M < 60 MB 93.8

C.2. Limitations and Future Work
While PointLoRA effectively reduces trainable parame-
ters and achieves competitive performance across diverse
tasks, it still has certain limitations. The effectiveness of
fine-tuning heavily depends on the quality of pre-trained
models, making it less adaptable to tasks involving do-
mains significantly different from those used during pre-
training. Additionally, the multi-scale token selection strat-
egy is heuristically designed, and its performance may vary
across various datasets and tasks. Furthermore, the scala-
bility of our method to extremely large pre-trained mod-
els remains unexamined, partly due to the current absence
of general large-scale models in 3D space. The variation in
task-specific performance also highlights the need for more
tailored solutions.

Future research could focus on developing more adap-
tive or learnable token selection mechanisms to enhance
flexibility and robustness. Exploring task-conditioned fine-
tuning strategies and hierarchical LoRA configurations may
improve scalability and performance, particularly for larger
models. Expanding the approach to handle multi-modal
data, such as combining point clouds with images or text,
presents another promising direction. Meanwhile, inves-
tigating domain-specific adaptation techniques could im-
prove performance in scenarios with significant domain
shifts from pre-training to downstream tasks.

C.3. Broader Impacts
The proposed approach facilitates parameter-efficient fine-
tuning for pre-trained point cloud models, increasing acces-



sibility to advanced technologies in domains such as au-
tonomous driving, robotics, and environmental monitoring.
Its efficiency also contributes to reducing the environmental
impact of deep learning by lowering energy consumption.
However, the improved capabilities of point cloud modeling
present risks, including potential misuse in privacy-invasive
applications or the propagation of unintended biases in au-
tonomous systems. To maximize its benefits while address-
ing these challenges, ethical deployment and responsible
governance will be essential.

D. License and Consent Information
D.1. Public Datasets
We conducted all the experiments on the subsequent openly
accessible datasets:
• ScanObjectNN [6]1 . . . . . . . . . . . . . . . . . . . . . MIT License
• ModelNet40 [7]2 . . . . . . . Other (specified in description)
• ShapeNetPart [8]3 . . . . . . Other (specified in description)

D.2. Public Implementation
We compare and validate the effectiveness of the proposed
method with the following publicly available pre-trained
models and source codes:
• Point-MAE [4]4 . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• ReCon [5]5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• Point-BERT [9]6 . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• IDPT [10]7 . . . . . . . . . . . . Other (specified in description)
• DAPT [12]8 . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• PPT [11]9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• LoRA [2]10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License

1https://hkust-vgd.github.io/scanobjectnn.
2https://modelnet.cs.princeton.edu.
3https://cs.stanford.edu/∼ericyi/project page/part annotation.
4https://github.com/Pang-Yatian/Point-MAE.
5https://github.com/qizekun/ReCon.
6https://github.com/Julie-tang00/Point-BERT.
7https://github.com/zyh16143998882/ICCV23-IDPT.
8https://github.com/LMD0311/DAPT.
9https://github.com/zsc000722/PPT.

10https://github.com/microsoft/LoRA.
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Figure A1. Visualization results for part segmentation on ShapeNetPart [8]. We present projected prediction images from PointLoRA
across four different viewpoints, including “Airplane”, “Bag”, “Chair” and “Guitar”.
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Figure A2. Visualization results for part segmentation on ShapeNetPart [8]. Projected prediction images from PointLoRA are shown
across four different viewpoints, including the categories “Lamp”, “Rocket”, “Skateboard” and “Table”.
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