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Supplementary Material

In this appendix, we first present the details of how to
train a neural network associated with our normalization
methods using stochastic optimization algorithms. Then
we provide the experimental configuration of this paper and
the experimental results omitted in the main text due to the
space limitation.

A. Details of The Training Process
A.1. Train Deep Neural Networks Associated with

PN
Actually, the training problem of a DNN associated with
PN, i.e., Equation 6 in the main paper, can be solved by
various stochastic optimization methods. In the following,
we take the stochastic Lagrangian multipliers as an example
to show how to train such models. For simplicity, we give
the steps of regular training, which can be adapted to FL
training easily according to FedAVG.

By introducing the Lagrangian multipliers (�(`)
k , ⇠(`)k )

with k 2 [m(`)] and ` 2 {0} [ [L], the constrained min-
imization problem (Equation 7 of the main paper) can then
be transformed into the following unconstrained maximin
problem:
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Here, we separate � and µ from ✓ to highlight them. By
changing the order of summation operators in the second
and third items in J(✓, µ, �,�, ⇠), We can then rewrite it as
follows:
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Note that J(✓, µ, �,�, ⇠) has been written as the sum over
the global training dataset D = [Mm=1Dm, thus the problem
(7) can be solved by alternatively applying stochastic gradi-
ent ascent on �, ⇠ and stochastic gradient descent on ✓ with
mini-batches as follows:

✓t+1  ✓t � ⌘tr✓Ĵ(✓t, µt, �t,�t, ⇠t),

µt+1  µt � ⌘trµĴ(✓t, µt, �t,�t, ⇠t),

�t+1  �t � ⌘tr� Ĵ(✓t, µt, �t,�t, ⇠t),

�t+1  �t + ⌘tr�Ĵ(✓t, µt, �t,�t, ⇠t),

⇠t+1  ⇠t + ⌘tr⇠Ĵ(✓t, µt, �t,�t, ⇠t),

where ⌘t is the learning rate andr✓Ĵ ,rµĴ ,r� Ĵ ,r�Ĵ and
r⇠Ĵ are the stochastic gradients calculated on a random
sampled mini-batch B. It is obvious that we can solve Equa-
tion 6 in the main paper as above with arbitrary batch size
by choosing a proper learning rate.

A.2. Train Deep Neural Networks Associated with
NPN

The training process of DNN associated with NPN is simi-
lar to that associated with PN. The only difference is that in
each forward propagation we first sample data independent
noises nµ and n� and then inject them into � and µ, respec-
tively, and we treat the noises as untrainable parameters in
the back propagation.

B. Experimental Configuration
In this section, we present the experimental settings and im-
plementation details.

Firstly, our code is based on PyTorch framework and
all the experiments on CIFAR-10 and CIFAR-100 are con-
ducted on one RTX 2080-Ti with 11GB memory.

For federated learning with small batch sizes, we comply
with the following setting: for local training, the networks
are trained using SGD optimizer with momentum and the
weight decay is set as 1e-4. The local learning rate for batch
size 8 is set to the best among {0.01, 0.015, 0.02, 0.025}
for each normalization technique. We use step decay learn-
ing rate scheduler and reduce learning rate by 1

10 at 100th
and 150th global communication rounds. We apply random
crop and random horizontal flip for data augmentation.

For experiments of training with large batch sizes, the
local learning rate is set to 0.1, the local batch size is set to
2048, and the other local hyper-parameters are set to be the
same as above. In each training step, the artificially injected
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Figure 3. (a) The training (left) and testing (right) loss of VGG-16 associated with BN, PN and NPN over the training process on CIFAR-
100 dataset; (b) The sensitivity of NPN to noise level on CIFAR-100 dataset.

noises for each channel are sampled independently from the
distributions of N (0, 0.1)

For all experiments, the statistics µ and � are initialized
to satisfy the constraints of Equation 6 in the main paper
and c and u are initialized with 0 and 1, respectively. The
learning rates of the Lagrangian multipiers (�(l)

k , ⇠(l)k ) are
set to 0.01 with weight decay of 1 to smoothen the training
phase.

C. Additional Experimental Results
In this section, we provide more experimental results, which
are omitted in the main text due to the space limitation.

C.1. Results on CIFAR-100
Below, we give the detailed experimental results on CIFAR-
100 to show the superiority of our proposed method over the
baselines. Here, the batch size is set to 2048.

We visualize the curves of VGG-16 associated with dif-
ferent normalization methods in Figure 3(a). We can see
that the testing loss of NPN is significantly smaller than all
the baselines at the end of the training process and the gap
becomes larger as the training goes on, while its training
loss is much larger than the other baselines over the whole
training process. This result demonstrates that our NPN can
prevent the model from being over-fitting effectively.

To show the sensitivity of our NPN to the noise level,
we train VGG-16 on CIFAR-100 with NPN under various
noise levels, i.e., the variance of the noise varies in (0, 0.1).
The results are reported in Fig.3(b). We can observe that
the training (resp. testing) loss increases (resp. decreases)
slowly when the noise becomes larger. Therefore, in real
applications, we can find a proper noise level without ex-
pending considerable efforts.

C.2. NPN with Different Kinds of Noise
Since in all the experiments above, we use Gaussian Noise
in NPN. A natural question to our NPN is that can we in-
ject other kinds of noise into PN to improve its general-

ization? To answer this question, we conduct a simple ex-
periment on CIFAR-10 with VGG-16. To be precise, we
compare the performances of NPN with two different kinds
of noises, i.e., Gaussian noise N (0, 0.1) and Uniform noise
U(�

p
3/10,

p
3/10). These two kinds of noises have the

same variance 0.1.

Table 6. The performances of our NPN with different kinds of
noise on VGG-16.

Noise Loss Top-1 Top-2 Top-3
Gaussian 0.28 93.66 98.05 99.12
Uniform 0.28 93.68 98.12 99.06

The results are given in Table 6. It shows that NPNs with
Gaussian noise and Uniform noise can achieve compara-
ble performances. Therefore, we can use different kinds of
noise in NPN and the only thing we need to do is to choose
a proper noise level. This result implies that our idea of in-
jecting data independent noise into normalization methods
is a very general technique.
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