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1. Convergence Analysis
As mentioned in main paper, the Kronecker equation Φ=
W ⊗H builds an equivalent transformation from Y =
HXW⊤+E to y = Φx+ ϵ, where y = vec(Y),x =
vec(X), ϵ = vec(E). Accordingly, the objective function
F (X) = f(X) + λg(X) is equivalent to its vectorized for-
mat F (x) = f(x) + λg(x). The following analyses are
based on the vectorized objective function for clarity.

In single-pixel imaging (SPI) paradigm, Proxf (x)=x+
Φ⊤(y−Φx)

1+ρ is the proximal operator of data fidelity function
f= 1

2∥y−Φx∥22 for HQS and ADMM. We propose a learned
proximal restorer (LPR) Rθ to approximate the proximal
operator Proxg∗(x)= ρx+λx∗

ρ+λ of an explicit regularization
function g∗= λ

2 ∥x−x∗∥22 (x∗ is the ground truth).

1.1. Convergence proof of PnP-HQS

Proxf (x) =x+ Φ⊤(y−Φx)
1+ρ is also a gradient descent map-

ping (Id−τ∇f)(x) with τ = (1+ρ)−1 and thus we use
the convergence analysis of the proximal gradient descent
(PGD) algorithm [1] for PnP-HQS convergence.

Proof. We denote the composition proximal operator of
HQS as T = Proxg∗ ◦ Proxf , the objective function F =
f + λg∗, and we introduce

Q(x,v)=f(x)+⟨v−x,∇f(x)⟩+1

2
∥v−x∥22+λg∗(v). (1)

We have
Q(x,x) = F (x) (2)

and

argmin
v

Q(x,v)=argmin
v

⟨v−x,∇f(x)⟩+1

2
∥v−x∥22+λg∗(v)

= argmin
v

λg∗(v)+
1

2
∥v−(x−∇f(x)∥22

= Proxg∗ ◦ (Id−∇f) (x) = T (x).

(3)
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The above argmin is unique by definition of the argmin
and the regularizer g∗, xk+1 = T (xk) implies that

Q(xk+1,xk) ≤ Q(xk,x
k). (4)

Moreover, since f is L-smooth, we have by the descent
lemma, for any t ≤ 1

L and any x,v ∈ Rn,

f(v) ≤ f(x) + ⟨v − x,∇f(x)⟩+ 1

2t
∥v − x∥22. (5)

By combining (1) with (5), for every x,v ∈ Rn and taking
t=1< 1

L , we have

F (x) ≤ Q(x,v). (6)

Therefore, by combining (2), (4) and (6), we get at iteration
k,

F (xk+1) ≤ Q(xk+1,xk) ≤ Q(xk,xk) = F (xk). (7)

The sequence {F (xk)}∞k=1 is thus non-increasing and
lower-bounded. {F (xk)}∞k=1 thus converges to a limit F ⋆.
Note that Q(xk+1,xk) ≤ Q(xk,xk) in (4) implies

λg∗(xk+1) ≤ λg∗(xk)−⟨xk+1−xk,∇f(xk)⟩−1

2
∥xk+1−xk∥22.

(8)
By combining (5) with step size t = 1

L , we have

F (xk+1) = f(xk+1) + λg∗(xk+1)

≤ λg∗(xk)−⟨xk+1−xk,∇f(xk)⟩− 1

2
∥xk+1−xk∥22

+ f(xk)+⟨xk+1−xk,∇f(xk)⟩+L

2
∥xk+1−xk∥22

= F (xk)−
1

2
(1−L)∥xk+1−xk∥22.

(9)

Summing over k = 0, 1, ...,K gives

K∑
k=0

∥xk+1 − xk∥22 ≤ 2

1− L
[F (x0)− F (xK+1)]

≤ 2

1− L
[F (x0)− F ⋆] .

(10)
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Therefore, limk→∞ ∥xk+1−xk∥22 = 0 with the
convergence rate γk = min0≤i≤k ∥xi+1−xi∥22 ≤
2
k
F (x0)−limF (xk)

1−L .

1.2. Convergence proof of PnP-ADMM

We use the convergence analysis of typical ADMM in The-
orem 1.

Theorem 1 (Convergence of ADMM [2]). If the functions
f : Rn → R∪{+∞} and g : Rn → R∪{+∞} are proper,
closed, and convex, there exist a saddle point (x⋆,v⋆,u⋆),
the ADMM iterates satisfy:
• Residual convergence. limk→∞(xk − vk) = 0, i.e., the

iterates approach feasibility.
• Objective convergence. limk→∞ F = limk→∞ f(xk) +
g(vk) = f(x⋆)+g(v⋆) = F ⋆, i.e., the objective function
of the iterates approaches the optimal value F ⋆.

• Dual variable convergence. limk→∞ uk = u⋆, where u⋆

is a dual optimal point.

Recall that f = 1
2∥y−Φx∥22 and g∗= λ

2 ∥x−x∗∥22. The
epigraph of h ∈ {f, g∗}

epi h = {(x, r) ∈ Rn × R|h(x) < r} (11)

is a closed non-empty convex set. It means that both f and
g∗ are proper, closed, and convex, thus PnP-ADMM con-
verge to the saddle point (x⋆,v⋆,u⋆).

2. Optimization Trajectories of Unrolling Net-
works

As analyzed in main paper, the optimization trajectories of
unrolling networks are usually zigzagged since their MSE
loss function could just impose that the final result is good.
Besides, the artifacts in intermediate results may be the
manifestations of informative representations in image do-
main. To demystify this, we take SAUNet, a representa-
tive unrolling network, as an example. As shown in Fig. 1,
we visualize the optimization trajectories of SAUNet [4]
at compressive ration 0.25 in different conditions, which
are composed of the input X0, the intermediate results
{X1,X2, ...,X6}, the final output X7 (i.e., 8 images in to-
tal), and we use PSNR (dB) to measure the image qual-
ity. At the original optimization trajectory, X3 and X5 ap-
pears to be full of artifacts. and X7 is the best. To under-
stand what the visual artifacts are, we add Gaussian noise
with 0.1 variance into X3 or reduce/remove the artifacts by
f(X3) = µX3+λX

µ+λ (X is the known ground truth). Clearly,
any operations over the artifacts lead to a image quality de-
crease over the final results X7. Hence, there is a seemingly
counterintuitive fact that the visual artifacts in intermediate
results are not useless in unrolling networks.

In typical unrolling networks, several subnets are sepa-
rated by a proximal operator and thus useful representations
cannot be propagated between subnets. We think that such
artifacts may be the incarnations of useful representations
for implicit information propagation.

3. Accuracy & Flexibility Comparison
As mentioned in main paper, PnP methods perform well on
generalization but poorly on accuracy, and unrolling meth-
ods are the opposite. Most previous unrolling methods
must be retrained or fine-tuned once the degradation ma-
trix Φ ∈ Rm×n (m≪ n) changes, i.e., there is an one-to-
one relationship between a well-trained model and a spe-
cific compressive ratio (CR). PnP methods are generic for
different tasks and the degrees of degradation and thus are
flexible for varying CRs.

Proximal unrolling (ProxUnroll) is proposed to integrate
the merits of PnP and unrolling methods for high accu-
racy, high efficiency, strong flexibility, and fast conver-
gence. When CR changes from 0.05 to 0.25, Fig. 2 visu-
alizes the real experiment results of PnP-DRUNet [5] (PnP
method), SAUNet-0.25 [4] (trained on CR=0.25), SAUNet-
0.15 (trained for CR=0.15), HATNet-0.25 [3] (trained for
CR=0.25), HATNet-0.15 (trained for CR=0.15), and our
HQS-ProxUnroll. Through the comparison on the marked
regions, it is clear that our single model HQS-ProxUnroll
can recover best details. PnP-DRUNet is highly flexible for
varying CRs but its performance is average due to the lack
of domain-specific knowledge. As two representative un-
rolling networks, SAUNet and HATNet perform well just
on the trained CR or close CRs.
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Figure 1. Optimization trajectories of a representative unrolling network (SAUNet) by adding Gaussian noise, reducing artifacts, removing
artifacts on one intermediate result highlighted by red box. The image quality is measured by PSNR (dB).
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Figure 2. The testing results of the real captured “resolution target” with 256 × 256 pixels. Unrolling networks are trained on a specific
CR marked by blue box.


