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Supplementary Material

First stage

Figure 1. Visualization of the hypergraph evolution process. The results demonstrate that the model progressively focuses on the object-

related affordance regions.

1. Analysis for Hypergraph Evolution

The Hypergraph Evolution Module is designed to optimize
the existing hypergraph structure to capture high-order re-
lationships within the data more effectively. To achieve this
goal, we propose a three-stage hypergraph evolution pro-
cess, where each stage contributes to improving the adapt-
ability and expressiveness of the hypergraph.

In the first stage, we dynamically introduce new hyper-

edges based on the semantic space. Specifically, we an-
alyze the semantic features of the input image to identify
potential associations and incorporate new hyperedges to
complement the existing hypergraph structure. This process
enhances the hypergraph’s representational capacity, better
capturing the complex relationships among regions. In the
second stage, we utilize egocentric deep features as a ref-
erence to filter the most relevant vertices and hyperedges
associated with the object’s affordance cues. This approach



Seen Unseen
Method
KLD| SIMt NSST KLDJ] SIM?T NSSt
Clustering 1.212 0403 1.192 1.398 0.375 1.169
Hypergraph  1.173 0.414 1.247 1.372 0.380 1.190

ViT 1.196 0.408 1.221 1.380 0.377 1.180
Mamba 1.173 0.414 1.247 1.372 0.380 1.190

Table 1. Ablation results of the baselines.

is based on the observation that affordance features of dif-
ferent objects exhibit varying degrees of saliency in visual
perception. Therefore, when constructing the hypergraph,
it is essential to prioritize hyperedges directly related to the
target object. This selection mechanism ensures that the hy-
pergraph structure aligns with the requirements of the target
task while effectively reducing interference from irrelevant
information. In the third stage, we refine the hypergraph
structure by eliminating redundant or less informative hy-
peredges introduced in the previous stages. To achieve this,
we apply specific criteria to identify and remove hyperedges
that contribute minimally to the final task. As a result, the
refined hypergraph remains compact while effectively pre-
serving key relationships within the image.

To validate the effectiveness of the hypergraph evolution
process, we conduct a series of experiments by feeding fea-
tures extracted from different evolution stages into subse-
quent modules and visualizing the corresponding heatmaps
in Figure 1. If the heatmaps generated from hypergraph-
computed features demonstrate a stronger focus on affor-
dance regions, the hypergraph effectively integrates fea-
tures from different regions and enhances the model’s un-
derstanding of structural and relational information within
the image. These experimental results further confirm the
effectiveness of our proposed hypergraph evolution module
in focusing on affordance-relevant visual components.

2. Implementation Details

For HICO-IIF dataset, we use SGD with a learning rate of
le-3, weight decay of 5e-4, and a batch size of 16. The loss
weight coefficients, A\, and Age, are set to 1 and 0.15,
respectively. The nearest S number is set to 1. For the
WSMA [3] method, we follow its basic configuration and
apply our approach to the DINO-ViT-S backbone network
accordingly.

3. Ablation Study of Baselines

To further demonstrate the effectiveness of our approach,
we conduct a comparative analysis between hypergraph and
conventional clustering [2], as well as Mamba and ViT [1].
The results presented in Table 1 indicate that the hyper-
graph and Mamba architectures exhibit superior perfor-

Method Inference Time Flops Params

R-Mamba (Ours) 0.2s 280G 32M
WSMA 0.1s 238G 51M
WSMA+Ours 0.26s 490G 82M

Table 2. Comparsion on efficiency (on batch sample) among
WSMA and Ours.

mance. This is because affordance regions are not isolated
but involve region-to-region relationships with other object
components. For example, the affordance of a cup is not
solely determined by its body or handle in isolation but by
their combination. The presence of the handle enables a sta-
ble grip, while the cup body holds liquid, and together, they
define the cup’s ’pouring” affordance. In our approach, the
DINO-ViT-S backbone segments both the handle and the
cup’s body into multiple patches, where their relationships
are established through interactions among these patches to
enable the pouring action collectively. Therefore, to accu-
rately localize affordance regions, it is crucial to capture the
many-to-many mapping relationships between different ob-
ject components. While the K-means method [2] primarily
focuses on grouping data, hypergraphs, in contrast, estab-
lish many-to-many mappings between regional features by
connecting multiple vertices through hyperedges. This en-
ables a more comprehensive representation of the relation-
ships among object components. Moreover, since ViT fo-
cuses on all tokens, it struggles to effectively capture the re-
gion relationships between visual components constructed
in the hypergraph. In contrast, Mamba excels at efficiently
modeling sequence dependencies, making it well-suited for
processing hypergraph-based information. It captures the
connections between local structures and global semantics,
which is critical for affordance understanding. Therefore,
we adopt the Mamba architecture to implement this process.

4. Results Analysis on WSMA

Through an in-depth analysis of the efficiency comparison
experiments, our method in Table 2 demonstrates signifi-
cant advantages in model complexity control. Compared to
the WSMA method, our method successfully reduces the
number of params by approximately 37%. Notably, despite
the substantial reduction in parameter size, our method in-
curs an increase in inference time compared to the baseline
method. This phenomenon arises from the high-order inter-
action paradigm of hypergraph computation. Unlike tradi-
tional pairwise point interactions, hyperedge operations up-
date the joint states of multiple vertices, which enhances the
model’s representational capacity but inevitably increases
the computational steps in each forward pass.
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