
SKE-Layout: Spatial Knowledge Enhanced Layout Generation with LLMs

Supplementary Material

Abstract In this supplementary material, we provide our
dataset generation in Section A, implementation details in
Section B, additional examples in Section C, and real-world
experiments in Section D.

A. Dataset Generation
A.1. SK dataset
We create the SK dataset, a benchmark specifically de-
signed to evaluate complex object rearrangement tasks. The
dataset consists of task instructions paired with their corre-
sponding layouts, where each instruction specifies a desired
spatial arrangement of objects. These high-level instruc-
tions are generated by a large language model (LLM) and
incorporate diverse semantic and geometric properties, fo-
cusing on both object attributes and spatial relationships.
To ensure physical realism and plausibility, we procedu-
rally generate stable, collision-free layouts using the Py-
Bullet physics simulator and render them with high-quality
visuals using Blender. The dataset includes more than 100
everyday household objects, as shown in Figure 1.

Figure 1. Objects used in SK dataset

To generate the task instructions, we collect rearrange-
ment tasks from previous studies on object rearrangement as
contextual examples and use them as prompts for the LLM,
where we use the following LLM template.

Template: You are a desk object rearrangement
project assistant. Your task is to generate table
object arrangement tasks. Tasks to consider are:
1. Relative position relationship between objects.
2. The relative position of objects and the table.
3. Creating shapes that represent a single number
or single letter using objects.
4. Forming simple geometric shapes (e.g., rectan-
gle, circle).

5. Forming semantic geometric shapes (e.g., star,
smile).
The list of items you can use and their serial num-
bers are: [obj info]. You only need to list tasks
with object numbers without providing specific
calculations or placement plans. Here are some
examples: [examples].

The generated tasks reflect a wide variety of scenar-
ios and challenges, leveraging the reasoning capabilities of
LLMs to create realistic and meaningful rearrangement in-
structions. This approach ensures the tasks are both con-
textually relevant and aligned with real-world complexity
while maintaining consistency with the benchmarks estab-
lished in prior research. After generating the task, we fur-
ther utilized LLM to determine the corresponding object
placement layout. We imported it into the Pybullet simula-
tion environment to verify its feasibility, where we use the
following LLM template.

Template: You are a desk object rearrange-
ment project assistant. Your task is to determine
whether the results of the robot placement meet
the instructions’ requirements. The given instruc-
tion: [task]. Please judge whether the task is suc-
cessfully completed. Select one of the following
options as the result output:
1. Completed task
2. Uncompleted task
3. Manual judgment required.

In summary, this comprehensive pipeline seamlessly inte-
grates task generation, layout generation, and validation,
providing a reliable and scalable framework for benchmark-
ing object rearrangement tasks.

A.2. StructFormer Dateset

As mentioned in the previous experiment section, the
StructFormer dataset is utilized in the StructFormer frame-
work and is designed for the robotic object rearrangement
task. Since it’s not feasible to perform experiments directly
in the point cloud environment, we extracted the necessary
information and constructed a precise simulation in Pybullet
for testing. This approach allowed us to accurately replicate
the object arrangements and constraints from the original
environment, ensuring that the model can execute precise
object placements for tasks. The figure 2 shows a detailed
comparison between the two environments.



Figure 2. Point Cloud and Pybullet Simulation environment on
Structformer dataset

B. Implementation Details

B.1. Task instructions

As is shown in Table 1, two distinct prompt templates are
designed to guide layout planning tasks for LLMs, targeting
image generation and object rearrangement, respectively.
For image generation, the template outlines a structured ap-
proach to create object layouts within a constrained 64px-
by-64px canvas. The instructions require the layout to fol-

low a CSS-style format, detailing object attributes such as
width, height, and absolute position (left and top). This
ensures that all properties adhere to the spatial limitations
while maintaining precision. Relevant knowledge is also
provided to assist the model in generating accurate layouts
based on given instructions. For object rearrangement, the
prompt template focuses on reorganizing objects on a table
according to specific instructions. It incorporates environ-
mental awareness and three-dimensional spatial definitions,
including coordinates (x, y, z) and rotation (yaw). The task
requires calculating positions and orientations while consid-
ering object size to avoid collisions. Contextual knowledge
is included to support further effective arrangement plan-
ning. These templates demonstrate a systematic approach
to facilitating diverse layout-related tasks for LLMs.

B.2. Implementation and Training Details
We implement our retrieval model using the Sentence
Transformer library and select distilbert-base-nli-stsb-
mean-tokens as the backbone. For task-specific adaptations,
we introduce an embedding head f , which consists of ad-
ditional Transformer layers followed by an MLP head g,
which consists of one hidden layer of size 768 and outputs
vectors of size 128, providing compact and task-relevant
embeddings for retrieval. The experiment is done on an
NVIDIA RTX 4090 GPU, and the hyperparameter settings
are listed in Table 2. For the LLM, we set the sampling
temperature to 0.7 to generate diverse data and results. The
number of examples related to spatial knowledge is fixed at

Table 1. Instructions for Layout Planning for LLMs.

Task Instruction for LLMs

Image Generation Instruction:
You are an image layout generation project assistant. Your task is to generate the layout of the
objects in the image according to specific instructions. The generated layout should follow
the CSS style, where each line starts with the object description and is followed by its abso-
lute position. Formally, each line should be like object{width:?px; height:?px;
left:?px; top:?px;}. The image is 64px wide and 64px high. Therefore, all proper-
ties of the positions should not exceed 64px, including the addition of left and width and the
addition of top and height. The given instruction: {instruction}. Here are some relative
tasks and corresponding layouts you can refer to: {knowledge}

Object Rearrangement Instruction:
You are a desk object rearrangement project assistant. Your task is to reposition items on
the table according to specific instructions. Table range: {min-x, min-y, max-x,
max-y, table-z}
The given instruction: {instruction}. Please calculate and provide the position and
orientation of each item on the table. Here is the detailed information about the objects:
{objects info}. Explanation of terms: {x y z}: These represent the coordinates in a
three-dimensional space. {yaw}: Rotation.
You need to focus on the size of the object and try to avoid bumping into each other. Here are
some relative tasks and corresponding layouts you can refer to: {knowledge}



Figure 3. Examples of the Object Rearrangement task

Table 2. hyperparameters

Parameter Value
Optimizer Adam
Learning rate 10−5

β (0.9, 0.999)
Learning rate schedule None
Epochs 100
Batch size 400
λimage 0.5
λobject 0.5

8 to ensure consistent input for LLM.

B.3. Details about Baselines
Robotic Object Rearrangement Task
• StructFormer: StructFormer is a structure-based Trans-

former model specifically designed for generating com-
plex object placement layouts. By leveraging its ability to
capture spatial relationships among objects, StructFormer
excels in arranging objects in a coherent and logical man-
ner, taking into account the dependencies between them.
Its transformer architecture allows it to efficiently process
object-to-object interactions, ensuring that the generated
layouts adhere to predefined spatial constraints and logi-
cal rules. StructFormer is particularly suited for tasks that
require a fine-grained understanding of spatial dependen-
cies, making it a robust baseline for robotic rearrange-

ment.
• LLM-GROP: LLM-GROP (Large Language Model with

Generate-and-Operate Planning) is an advanced model
that combines the capabilities of large language mod-
els with generate-and-operate planning techniques. This
model uses language models to generate initial proposals
for object layouts based on the input instructions and then
applies planning algorithms to refine and execute these
layouts. By integrating linguistic reasoning with opera-
tional precision, LLM-GROP achieves high accuracy in
placing objects according to both spatial and contextual
requirements. Its two-step approach ensures that the fi-
nal arrangement is not only logical but also feasible in a
real-world setting.
Image Generation Task

• Stable Diffusion: Stable Diffusion is a state-of-the-art
Text-to-Image generation model that employs a diffusion-
based approach to create high-resolution, photorealistic
images from textual prompts. This model excels in cap-
turing intricate details and producing visually coherent
outputs, even for complex scenes with multiple objects
and nuanced relationships. By iteratively refining noisy
images toward the desired output, Stable Diffusion en-
sures high-quality results, making it a powerful tool for
diverse image generation tasks.

• Attend-and-Excite: Attend-and-Excite is an end-to-end
Text-to-Image generation model that leverages attention
mechanisms to emphasize critical details in the input tex-
tual descriptions. By focusing on the most salient parts



Figure 4. Real-world Experiments

of the prompt, this model generates realistic and con-
textually relevant images. Its attention-driven approach
ensures that the generated visuals align closely with the
key elements of the textual input, making it particularly
effective for scenarios where precision and detail are
paramount.

• LayoutTransformer: LayoutTransformer is a Text-to-
Layout generation model that utilizes a transformer ar-
chitecture to produce structured layouts from textual de-
scriptions. This model focuses on creating spatially ac-
curate and logically organized layouts that serve as a
blueprint for subsequent image generation. By generat-
ing intermediate layouts, LayoutTransformer bridges the

gap between textual input and visual output, providing a
structured representation that can guide downstream im-
age generation models.

• LayoutGPT: LayoutGPT is a Text-to-Layout generation
model that harnesses the power of large language models
to create layouts directly from textual prompts. By com-
bining the linguistic understanding of LLMs with layout
generation capabilities, LayoutGPT can produce spatially
organized and contextually relevant layouts. Its flexibil-
ity and adaptability make it an ideal choice for gener-
ating layouts that accurately reflect complex textual de-
scriptions, serving as a robust baseline for Text-to-Layout
tasks.



C. Additional Examples
We provide additional visual examples to highlight the per-
formance of SKE-Layout in various contexts. Figure 3
showcases some examples of the object rearrangement task.

D. Real-world Experiments
We used a RealSense D435i as a fixed camera and deployed
our system on an Elephant Pro630 robot to evaluate real-
world object manipulation. The environment perception al-
gorithm integrates DETR and VLM, as mentioned in the
main text, while high-level execution instructions are gener-
ated by the LLM. DMPL is used for motion planning of the
robotic arm. As shown in the figure 4, the final object place-
ments are semantically logical, successfully completing the
object rearrangement tasks (e.g., square, circle). These re-
sults effectively demonstrate the capability of our approach
to perform real-world tasks using a robotic platform.


	Dataset Generation
	SK dataset
	StructFormer Dateset

	Implementation Details
	Task instructions
	Implementation and Training Details
	Details about Baselines

	Additional Examples
	Real-world Experiments

