SVFR: A Unified Framework for Generalized Video Face Restoration

Supplementary Material

In the supplementary material, Sec.A first presents more re-
sults of our pilot study. Then, Sec.B shows details about our
implementations in our unified face restoration framework
training. Following, Sec.C provides more visual results of
comparisions among SOTA methods, and Sec.D presents
the inference speed and memory consumption. Finally, Sec.
E presents more related works.

A. Face Restoration Pilot Study

In the main artical, we discuss a pilot experiment de-
signed to validate the mutual benefits among different fa-
cial restoration tasks. Specifically, our task pool includes
BFR, colorization, and inpainting. To examine whether
prior knowledge from one task can benefit another, we use
GPEN as the baseline method and train under two distinct
settings: (1) training from the weights of pretrained Style-
GANvV2, and (2) transfer learning, where the model is pre-
trained on one task and fine-tuned on the target task. The
results demonstrate that models trained without restoration
prior task-specific knowledge exhibit weaker performance.
In contrast, models trained with restoration prior knowledge
achieve better results, highlighting that knowledge sharing
among tasks positively contributes to the performance of in-
dividual facial restoration subtasks.

As shown in Fig.1, BFR trained with transfer learning
demonstrates more specific structures compared to train-
ing initialized with pretrained StyleGANv2. This indi-
cates that pretraining on the inpainting task benefits BFR
training by enhancing the model’s ability to restore face.
For example, results with transfer learning demonstrate a
more complete and realistic tooth structure, while the coun-
terpart without transfer learning exhibits noticeable distor-
tions in the tooth region. Similarly, the colorization task,
when trained with BFR pretraining, exhibits improved per-
formance, accurately coloring the appropriate regions with-
out overspreading. For example, without transfer learning,
the results mistakenly color certain parts of the hair with
unnatural hues, whereas with transfer learning, this issue
is not occur. Moreover, inpainting trained with BFR pre-
training becomes more precise, focusing specifically on the
masked regions. Without transfer learning, the beard details
are not accurately restored, and noticeable areas of incom-
plete restoration appear.

This indicates that leveraging the prior knowledge from
related tasks not only accelerates the learning process but
also enhances the performance of the target task, providing
strong evidence for the effectiveness of multi-task learning
in video face restoration.
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Figure 1. The results of our pilot study. For BFR (top two rows),
transfer learning enhances realism in features like teeth and eyes.
In colorization (middle two rows), it improves sensitivity to hu-
man regions, avoiding errors in areas like hair. For inpainting
(bottom two rows), transfer learning restores fine facial textures,
while models without it leave noticeable artifacts.

B. Implementation Details

B.1. Training Network Details

As discussed in the main text, our model incorporates both
a multi-task training framework and a facial structure prior
framework. Below, we provide a detailed description of the
corresponding model architecture.

Chosen layer. For Unified Latent Regularization (ULR),
we flatten mid-block features in the height and width di-
mensions to compute loss, leveraging their smaller spatial
size to reduce computational load. Besides, both ULR and
facial prior learning (FPL) require relatively deeper features



Table 1. Ablation study on A1 (for Ly r) and A2 (for Lpiror) hyperparameters.

Methods

BFR / Colorization / Inpainting

PSNRT SSIMT LPIPS]

IDST VIDD| FVD|

AM=0,A2=0
A1=0.1,2=0
A =0.01,2=0

28.936/22.921/28.303 0.854/0.870/0.898 0.242/0.274/0.156  0.881/0.979/0.875 0.489/0.501/0.511
28.695/22.788 /28.004  0.849/0.861/0.896 0.245/0.277/0.161  0.877/0.976/0.875  0.504/0.503/0.515  102.146/229.516/ 104.102
29.296/22.987/28.337 0.859/0.886/0.900 0.225/0.270/0.155 0.884/0.978/0.879  0.486/0.498 /0.508
A1 =0.01,A2 =0.5 29.077/22.908/28.164 0.851/0.878/0.897 0.233/0.273/0.158 0.880/0.977/0.876 0.491/0.498/0.511
A1 =0.01,A2 =0.1 29.563/23.079/29.119 0.862/0.896/0.904 0.223/0.272/0.153  0.902/0.980/0.888  0.479/0.497 / 0.504

98.781/223.168 / 101.146

90.353/214.846/93.615
94.172/220.583 / 98.147
89.316 / 204.260 / 88.354
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Figure 2. The structure of our Latent Transformer module.
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Figure 3. The structure of our Landmark Predictor module.

to capture robust intermediate information, while avoiding
layers too close to the output to prevent compromising vi-
sual quality. Mid-block features offer the best balance.
Latent Transformer module. In multitask training, multi-
ple tasks share a common feature space, requiring the model
not only to optimize for individual tasks but also to main-
tain consistency within the shared feature space. To address
this, we designed the Latent Transformer module, as show
in Fig.2, which maps intermediate features x4 from the U-
Net to a unified latent space. By calculating contrastive
loss on these unified features, the module effectively learns
shared representations across different tasks, improving the
model’s ability to generalize and enhance performance.
Landmark Predictor module. To enhance the structural
consistency of facial restoration results, we introduced a
Landmark Predictor module. This module takes intermedi-
ate features from the U-Net and predicts 68 facial landmarks
through the predictor. The detailed structure is illustrated in
Fig.3.

B.2. Ablation Study
As mentioned in the main text, our objective function is:

L= Enoise + )\I‘CULR + )\2£prior- (1)

Next, we empirically set the hyperparameters for training
and conduct ablation experiments on the A\; and Ay hyper-
parameters. The results, shown in Tab.1, demonstrate that
A1 = 0.01 and Ay = 0.1 yield the best performance.

B.3. Data Filtering

To enhance the quality of our training data, we filtered
training datasets (VoxCeleb2 [5], CelebV-Text [26], and
VFHQ [23]) rigorously. We first extracted square face
bounding boxes and scaled them by a factor of 0.2. Then we
crop and filter out those with resolutions below 512. Subse-
quently, we applied the image quality assessment method
ARNIQA [1], using a model trained on “live” data, to
further select frames with scores above 0.75. This pro-
cess yielded a high-quality video dataset comprising 20,000
clips.

C. More Results

We conducted a comprehensive comparison with other
methods on the VFHQ-test public dataset across three tasks:
BFR, Colorization, and Inpainting. Additionally, we col-
lected real-world data to further validate the effectiveness
of our approach. The videos mentioned above are in-
cluded in the project website ht tps://wangzhiyaoo.
github.io/SVFR/.

D. Inference Speed

Diffusion models often suffer from high inference time and
memory consumption. To evaluate the efficiency of our
method, we compared its speed and GPU memory usage
against other approaches. Experiments were conducted
on an RTX 3090 GPU, generating 100 video frames (see
Tab.2).

Table 2. Inference speed and memory.

Methods GPEN  CodeFormer PGDiff KEEP PGTFormer  Ours
Time(s) 47.39 47.58 279.08  15.17 3458 250.64
Memory-Usage(MiB) 1646 1604 4884 15030 4062 16824
E. Related Works

E.1. Video Colorization

Video colorization involves adding color to grayscale
frames while maintaining temporal coherence. Existing
methods fall into three categories: post-processing tech-
niques, exemplar-guided colorization, and reference-based
approaches. Post-processing methods use temporal filters
to reduce flickering but often result in desaturated colors [3,
12]. Exemplar-guided methods propagate user-provided
scribbles or transfer colors from reference images, relying


https://wangzhiyaoo.github.io/SVFR/
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on optical flow, which can introduce artifacts due to flow in-
accuracies [10, 14, 19, 25]. Reference-based methods use a
single colored frame to colorize subsequent frames, leverag-
ing either hand-crafted features or deep learning for tempo-
ral correspondence [2, 9, 10, 17, 21, 22, 28]. In comparison
with these works, we in this paper propose a unified frame-
work for all three visual tasks with simple network structure
and improved performance.

E.2. Video Inpainting

Advances in video inpainting have largely been driven by
methods that fill in masked regions by borrowing content
from unmasked regions in other frames, known as content
propagation methods. These methods typically use optical
flow estimates [0, 8, 11, 24], self-attention [13, 16, 18, 27],
or a combination of both [15, 29, 30] to propagate pixel
values or learned features across frames. While these meth-
ods often produce visually compelling results, especially in
tasks where the masked region is visible in nearby frames,
they struggle with heavy camera motion, large masks, or
tasks requiring semantic understanding of the video con-
tent. More recent work has utilized diffusion models for
video inpainting. Gu et. al. [7] combines a video diffu-
sion model with optical flow guidance, following a similar
content propagation approach. Chang et. al. [4] uses a la-
tent diffusion model [20] to remove the agent’s view of it-
self from egocentric videos for robotics applications. This
is framed as an image inpainting task, where the goal is to
remove the agent from a single video frame conditioned on
previous frames, resulting in a lack of temporal consistency.
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