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Supplementary Material

A. More Details about SEMA
A.1. More Details of SEMA Training
We discuss more details of SEMA training using a more
detailed example in Fig. 9, which contains more details
(i.e., different types of cases and the distribution shift detec-
tion/scanning procedure) compared to that in Fig. 1. At the
start of the training, each transformer block at different layers
is equipped with one adapter module containing one adapter
and one representation descriptor, as well as an expandable
weighting router, as shown in Fig. 9 (b). They are added
as the default adapters and trained on the first task. After
the first task, for the incoming new tasks, SEMA monitors
the representations of each batch of samples at each layer
with the AE-based representation descriptor. As discussed
in Sec. 3.6, the distribution shift is measured using the z-
score computed from the mean and standard deviation of
reconstruction errors stored in a buffer. This buffer is imple-
mented as a fixed stack of 500 samples, maintaining recon-
struction errors from the most recent batches. New adapters
are added if a significant enough representation/distribution
shift is detected at each layer. Adding the adapters expands
the model’s representation ability for handling the new pat-
terns. As introduced in the main paper, SEMA performs
task-oriented expansion (in the class-incremental learning
setting given the task boundary in training), adding at most
one adapter per layer. As shown in Fig. 1 and Fig. 9, the de-
tection and expansion operation starts from the transformer
layers closest to the input. Once a significant distribution
shift is detected at a specific layer that could not be handled
by all existing adapters (detected by RDs), an expansion
signal is triggered in this layer/block. A new adapter module
will be added to the layer where the expansion signal is trig-
gered, along with an expansion of the weighting router, and
activated for training. After sufficient training, the detection
phase will be restarted for the later layers. If no distribution
shift is reported for a task in any layers, as shown in Fig.
9 (c), no adapter module will be added, and no training of
adapters is required for this task.

B. More Details about Implementation and
Evaluation

B.1. Details of Datasets
CIFAR-100 contains 100 classes with 500 training samples
and 100 testing samples per class.
ImageNet-R contains renditions of 200 ImageNet classes,

which is a challenging CL benchmark introduced by with
great intra-class diversity.
ImageNet-A contains real-world images filtered from Ima-
geNet in an adversarial manner which are hard to be classi-
fied by models pre-trained with ImageNet.
VTAB consists of 50 classes from 5 domains with 10 classes
from each domain.

To construct class-incremental setting, for results reported
in Tab. 1, CIFAR-100, ImageNet-A and VTAB are split in
a manner where each task consists of 10 distinct classes.
ImageNet-R is reported with results for 5 tasks (40 classes
per task), 10 tasks (20 classes per task), and 20 tasks (10
classes per task).

B.2. Implementations of Compared Methods
For SimpleCIL and ADAM, we use the official im-
plementation at https://github.com/zhoudw-

zdw/RevisitingCIL. For InfLoRA, we use the
official implementation at https://github.com/

liangyanshuo/InfLoRA. For other prompting meth-
ods, namely L2P, DualPrompt and CODA-P, we adopt
the open-source implementation from PILOT toolbox [69],
available at https://github.com/sun-hailong/
LAMDA-PILOT. In our experiments, we adhere to the hy-
perparameter configurations as specified in the original pub-
lications for each of the compared methods, We use ViT-
B/16-IN1K as the backbone with the same data shuffling as
[90] for all methods.

B.3. Details on Evaluation Metrics
Denote the accuracy of the i-th task after training on the
N -th task as Ai,N . The average accuracy AN represents the
average accuracy of all seen tasks after training on the N -th
task:

AN =
1

N

NX

i=1

Ai,N ,

which is often considered as the most important evaluation
metric in continual learning.

The average incremental accuracy Ā is the average accu-
racy along incremental stages, defined as:

Ā =
1

N

NX

t=1

At.

https://github.com/zhoudw-zdw/RevisitingCIL
https://github.com/zhoudw-zdw/RevisitingCIL
https://github.com/liangyanshuo/InfLoRA
https://github.com/liangyanshuo/InfLoRA
https://github.com/sun-hailong/LAMDA-PILOT
https://github.com/sun-hailong/LAMDA-PILOT
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Figure 9. A more detailed example for the illustration of the learning process. (a) The pre-trained model with L transformer layers is
provided for adaptation. (b) At the start of training, each transformer layer is equipped with one expandable weighting router and one adapter
module, including one functional adapter and its paired representation descriptor. All modules are trainable at this stage. (c) All modules
and routers are frozen after the training on Task 1. When Task 2 arrives, the detection of distribution shift is performed with all frozen
representation descriptors in each transformer layer for all batches in Task 2. Since no distribution shift is observed, module addition is not
performed and all modules are frozen. (d) As Task 3 arrives, the detection for the distribution shift is executed again and the distribution
shift is observed in the L-th layer. Expansion signal is triggered and an adapter module is added in the L-th layer with the expanded router.
Training for the newly added adapter and router is performed. Since the addition is performed at the last transformer layer, no further
detection for distribution shift is required. (e) When Task 4 arrives, expansion signal is triggered in the L� 1-th layer during the detection
phase. After sufficient training, the newly added module is frozen and detection for distribution shift in later layers is executed. When both
representation descriptors in the L-th layer consider the incoming feature as an outlier, expansion signal will be triggered. A new module is
added for training in the L-th layer while all other modules are frozen.

Method CIFAR-100 5-Task IN-R 10-Task IN-R 20-Task IN-R ImageNet-A VTAB
Ā AN Ā AN Ā AN Ā AN Ā AN Ā AN

L2P 89.51 85.02 72.90 65.83 74.55 69.75 74.49 65.82 46.67 39.30 79.17 63.56
DualPrompt 90.39 85.64 73.91 68.81 73.10 67.18 73.67 68.88 58.45 48.78 88.11 77.58
CODA-P 91.01 86.20 79.78 74.68 79.15 73.05 70.36 65.32 50.73 37.06 85.13 85.85
SimpleCIL 87.13 81.26 59.70 54.33 61.12 54.33 61.92 54.33 60.50 49.44 85.99 84.38
ADAM 92.18 87.47 77.28 70.58 76.71 69.18 75.08 67.30 60.53 49.57 85.95 84.35
InfLoRA 91.71 86.73 81.75 76.77 81.38 74.72 76.97 69.65 56.84 41.61 89.61 86.52

SEMA 92.23 87.84 83.27 77.13 81.39 74.82 77.84 69.60 62.50 51.35 91.99 90.86

Table 4. Experiments on class-incremental learning benchmarks with ViT-B/16-IN21K weight.

C. More Experiments and Ablation Studies

C.1. Influence of Pre-trained Weights

In the main paper, we experiment SEMA and other methods
with ViT-B/16-IN1K in Tab. 1. To study the influence of
pre-trained weights, we further experiment SEMA with an-
other commonly used pre-trained ViT weight, i.e., ViT-B/16-
IN21K. We evaluate the performance using average accuracy
AN and average incremental accuracy Ā. As shown in Tab.
4, SEMA consistently outperforms prompting and adaptation
methods in most class-incremental learning settings. This
indicates that our model is robust in performance regardless

of different choices of pre-trained weights.

C.2. Further Analyses on the Effectiveness of Self-
Expansion

The proposed method SEMA enables the model to add pa-
rameters and expand its capacity on demand. It allows the
model to handle samples that could not be handled before by
adding a small number of parameters. In continual learning,
this process helps to alleviate forgetting by avoiding interfer-
ence from new patterns while still encouraging knowledge
reuse and transfer. Unlike some methods [68, 73, 92] that
continually adding task-specific modules by task with a lin-



Dataset Expansion by Task SEMA
Params (M) AN Params (M) AN

CIFAR-100 1.066 86.86 0.645 86.98
ImageNet-R 1.904 74.08 0.617 74.53
ImageNet-A 1.904 52.80 0.560 53.32
VTAB 0.647 89.09 0.554 89.64

Table 5. Comparison of added parameters and accuracy with differ-
ent expansion strategies. “Expansion by Task” is a naive implemen-
tation of SEMA’s variant that adds one set of adapters (at all layers
allowing expansion) for every new task. SEMA only expands if a
distribution shift is detected by the representation descriptor.

ear parameter growth rate, SEMA produces a sub-linear
expansion rate, w.r.t. number of seen tasks. To analyze
and show the effectiveness of this self-expansion process,
we conducted comparisons on four different settings where
CIFAR-100, ImageNet-R, ImageNet-A and VTAB contain
10 tasks, 20 tasks, 20 tasks and 5 tasks respectively, corre-
sponding to four settings reported in Fig. 3. We compare
with other related methods and a naive implementation of the
“expansion-by-task” variant of SEMA. This simple variant
model incrementally adds adapters to the layers that allow
expansion for each incoming task. The number of parame-
ters and accuracy are reported in Tab. 5. Despite the naive
implementation of “expansion-by-task”, the results in Tab.
5 show that SEMA with flexible self-expansion can achieve
better performance than that using more parameters. We
demonstrate that our expansion strategy is efficient in both
controlling the size of added parameters, regardless of the
length of task sequence, encouraging knowledge reuse and
reducing potential task interference in adapter weighting.

Tab. 6 reports the size of added parameters in several
different PTM-based methods. While L2P uses a fixed size
of prompt pool with small amount of added parameters, the
fixed size of trainable parameters may limit its capability to
adapt to more distribution shifts in continual learning and
comes with a higher chance of forgetting. Compared to other
methods (i.e., CODA-P and DualPrompt) that incrementally
add parameters (i.e., prompts in these methods) for each task,
SEMA involves much fewer added parameters in the model.
Apart from the adaptation approach and expansion strategy,
the compared methods in this part use similar techniques
as the proposed method (such as the classifier and PTMs).
Note that the added parameters for SEMA only consider the
functional adapters that are used in deployment. The RDs
are maintained for training and updating of the model, which
can be handled in parallel to other parameters and do not
influence the deployment of the model. As shown in Fig.
10 (also demonstrated in the main paper Fig. 8), SEMA can
dynamically expand the model with a small sub-linear rate,
while the other methods are usually with a linear rate.
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Figure 10. Analysis on added parameters (in Millions) during
model deployment on ImageNet-A. We compare with methods
using fixed number of prompts like L2P, and methods like Dual-
Prompt and CODA-P that incrementally expand like SEMA but
with prompts and on a linear basis according to tasks. Expansion by
task adds adapters for every incoming task, whilst SEMA executes
expansion on demand, which increments parameters on a sub-linear
basis. Specifically, SEMA added more parameters (with expansions
at more layers) at Task 9 than other steps with expansion.

C.3. Further Discussions on the Weighting Router

Routing relying on representation descriptor. In SEMA,
we use the representation descriptors (RDs) to capture the
distribution of the input representations corresponding to
each modular adapter, which are used to detect novel pat-
terns triggering the expansion signal. The RDs can be used
to compose the adapters via hard selection, as in similar
modular networks. Specifically, the reconstruction error of
the AE-based RDs can provide the identity information of
each inference sample, w.r.t. the adapters, at different lay-
ers. However, the RD-based adapter selection/routing can
be unreliable for every single individual input, and related
works usually rely on the statistics of a batch of samples [55],
limiting the application. We thus propose directly learning
the soft weighting router for mixture usage of the adapters.
To analyze the behavior of the RDs in detail, we conduct
the experiments that perform adapter composing relying on
the RDs and show the results in Tab. 7. As shown in Tab.
7, the RD-based routing can achieve sound performance on
most datasets, which validates the representation ability of
RDs. SEMA with the soft weighting router can perform bet-
ter, relying on the specifically learned router that is trained
together with the adapters.
More discussions on adapter usage. Fig. 5 shows the
average adapter usage of each task on VTAB. For clear visu-
alization, we enable expansion to be performed only at the
last layer and attach sample images from each task in Fig.
5. Adapter 1, Adapter 2, and Adapter 3 are automatically



Type Method CIFAR-100 ImageNet-R ImageNet-A VTAB
Params (M) AN Params (M) AN Params (M) AN Params (M) AN

Fixed Param Size L2P 0.123 77.87 0.200 62.90 0.200 38.48 0.085 80.83

Expandable Param Size
DualPrompt 1.022 80.43 1.098 61.97 1.098 50.23 0.983 79.79

CODA-P 3.917 86.11 3.994 70.02 3.994 35.02 3.878 81.58
SEMA 0.645 86.98 0.617 74.53 0.560 53.32 0.554 89.64

Table 6. Number of added parameters used in model deployment, measured in Millions. L2P uses a fixed size of prompts. DualPrompt and
CODA-P incrementally add parameters (i.e., prompts) sequentially by task. SEMA adds a small number of parameters with its dynamic
expansion strategy.

Method CIFAR-100 5-Task IN-R 10-Task IN-R 20-Task IN-R ImageNet-A VTAB
Ā AN Ā AN Ā AN Ā AN Ā AN Ā AN

SEMA 91.37 86.98 84.75 79.78 83.56 78.00 81.75 74.53 64.53 53.32 91.26 89.64
RD-based routing 90.91 83.61 84.46 79.50 82.76 76.63 81.02 74.13 61.80 50.36 90.83 88.53

Table 7. Comparison between routing with the expandable weighting router and RD-based routing.
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Figure 11. Adapter usage visualization on VTAB (same as Fig. 5). For clear and simplified visualization, we only allow expansion at the last
transformer layer. We report the average adapter usage of each task. We also provide visual illustrations of sample images from each VTAB
task.

Method Train Time (s)
CIFAR-100 ImageNet-R ImageNet-A VTAB

L2P 0.27 0.27 0.29 0.28
DualPrompt 0.25 0.25 0.27 0.29
CODA-P 0.31 0.32 0.35 0.36

SEMA (Overall) 0.25 0.11 0.15 0.31
- Adapter 0.13 0.10 0.12 0.20
- RD 0.12 0.01 0.03 0.11

Table 8. Average per-batch train time of each method on each task measured in seconds. SEMA (overall) denotes the training time used
when adapter and representation descriptor (RD) are trained sequentially.



Method Inference Time (ms)
CIFAR-100 ImageNet-R ImageNet-A VTAB

L2P 9.44 9.53 9.86 9.46
DualPrompt 9.44 9.51 9.84 9.44
CODA-P 9.45 9.47 9.85 9.43
ADAM 9.95 10.03 10.36 9.45

SEMA 4.48 7.39 9.01 7.38

Table 9. Per-image inference time of each method measured in milliseconds.

added and trained when Task 1, Task 2, and Task 3 arrive,
respectively. Task 1, Task 2, and Task 3 all present high pref-
erence for choosing the adapters that were trained with them,
showing the effectiveness of the router to direct samples to
the adapter that is trained with a similar distribution. While
adapter expansion is not triggered for Task 4, Task 4 data
largely employs Adapter 1 during inference. As visualized in
Fig. 11, the data distribution between Task 1 (remote sensing
images) and Task 4 (land cover) is similar. Similarly, Task
3 (pets) and Task 5 (flowers) both comprise natural images
with similar characteristics, hence have higher similarity in
distribution than Task 1 (remote sensing images) and Task
2 (texture images), and exhibit a preference for Adapter 3.
Thus, we show that our expandable weighting router can
effectively select the proper mixture pattern of adapters with
various data distributions.

C.4. Training and Inference Time

All experiments can be produced on a single NVIDIA
GeForce RTX 3090 GPU. To compare the training efficiency,
we report the per-batch training time averaged over the in-
cremental learning process in Tab. 8. Similar to Tab. 5,
ImageNet-R here is split into 20 tasks with 10 classes per
task. Note that the training processes of adapter and repre-
sentation descriptor in each adapter module of SEMA are in
parallel after expansion, thus the training of these two com-
ponents can be performed in parallel with multiple GPUs.
We report the training time of adapters (i.e., “Adapter” in
Tab. 8) and representation descriptors (i.e., “RD” in Tab.
8) separately, along with the overall time usage of SEMA
training if adapters and representation descriptors are trained
sequentially.

SEMA with components trained in a parallel manner is
highly efficient. Even without the parallel setup, training the
adapters and RDs in SEMA in sequence can still be faster
than other PTM-based CL methods on most datasets. As
SEMA only expands while encountering distribution shifts
in incoming new tasks, for tasks that do not trigger expan-
sion, no training of adapters and representation descriptors
is performed and training time on these tasks is minimized,
leading to training efficiency in the long term. Note that

the scanning for distribution shifts is stopped as long as a
batch of data triggers expansion behaviour, which is more
efficient comparing to InfLoRA which requires processing
through all data in the given task twice for LoRA initial-
ization before training and post-training computation for
gradient projection memory.

We evaluate the inference efficiency and report the aver-
age inference time of each image measured in milliseconds
in Tab. 9. We show that SEMA is efficient compared to other
methods on all datasets. The inference latency of the listed
prompting continual learning methods is caused by the extra
procedure of processing the image with a frozen pre-trained
model for the query function. Similarly, ADAM requires ex-
tra feature extraction with a frozen pre-trained model for the
concatenation of pre-trained features and adapted features.
SEMA relieves the dependency on the frozen pre-trained
model as we focus on the intermediate feature distribution
of each transformer block.

C.5. Additional Results on Longer Task Sequence
We perform the 50-step experiment on ImageNet-R and
ImageNet-A, where each task contains 4 classes, and report
the performance in Tab. 10. SEMA outperforms all other
methods in longer task sequences.

Method ImageNet-R ImageNet-A
Ā AN Ā AN

L2P 69.11 63.53 40.77 33.31
DualPrompt 64.21 56.25 49.74 39.83
CODA-P 61.34 56.37 34.36 23.17
ADAM 69.59 62.58 59.44 48.58
InfLoRA 67.01 61.37 47.33 31.27

SEMA 74.64 67.03 60.82 49.18

Table 10. Evaluation on longer task sequence with 50 tasks.

C.6. Additional Results on Incremental Perfor-
mance

We present a comparison of performance across incremen-
tal stages for CIFAR-100, 20-Task ImageNet-R, 20-Task
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Figure 12. More results on incremental performance for ImageNet-R and ImageNet-A.

ImageNet-A and VTAB in Fig. 3 of the main paper. We fur-
ther conduct experiments on ImageNet-A which is split into
10 tasks. We provide the incremental performance of 5-Task
ImageNet-R, 10-Task ImageNet-R and 10-Task ImageNet-A
in Fig. 12. Both figures show that SEMA performs consis-
tently well with different dataset splits.

C.7. Analyses on Training with Less Data

We further conduct analyses on the scenario of training
with less data. Benefiting from the better knowledge
reuse/transfer ability, SEMA can achieve better performance
with less data. We specifically compare with a state-of-the-
art method, EASE [92], which expands task-specific adapters
at all layers of the transformer. Unlike all other methods we
compared with in the main paper, EASE also incrementally
adds classification heads for all tasks and ensembles them in
inference. In Tab. 11, we show the results of experiments on
VTAB while removing 90% of samples in one and two tasks,
respectively, denoted as VTAB-1 and VTAB-2. Although
EASE uses a much stronger classification head, SEMA can
perform better in this data efficiency learning experiment.
We then further extend this data efficiency experiment to
ImageNet-A by keeping only 10 or 20 percent of data for
all tasks. As shown in Tab. 12, with sub-linear expansion,
SEMA obtains performance comparable to EASE which
requires task-oriented expansion at linear growth rate.

Method VTAB-1 VTAB-2
Ā AN Ā AN

SEMA 86.74 81.33 85.99 80.06

EASE 86.56 78.37 86.76 78.86

Table 11. Experiments on setting with limited data samples on
VTAB. VTAB-1 and VTAB-2 randomly removes 90 percent of data
in one and two task(s), respectively.

Method ImageNet-A 10% ImageNet-A 20%
Ā AN Ā AN

SEMA 52.90 41.41 57.85 48.26

EASE 52.79 41.67 57.46 48.65

Table 12. Experiments on setting with limited data samples on
ImageNet-A. ImageNet-A 10% contains only 10 percent of data in
original ImageNet-A for all tasks and ImageNet-A 20% contains
20 percent.

C.8. Experimental Results with Different Seeds and
Varying Class Orders

We conduct five independent runs with different seeds for
SEMA on all datasets, and report the mean and standard
deviation of accuracies over separate runs in Tab. 13. With
different random seeds, each run is performed with different
shuffling of class order and model initialization weights.
This demonstrates the robustness of SEMA’s performance
with varying task/class orderings.

C.9. Ablation Study on the Hidden Dimension in
AE

We test different values for hidden dimensions in the AE
as representation descriptors. The AE-based representation
descriptors enable the capture of the characteristics of the
data for decision-making on whether to add a new adapter
during continual training. According to Fig. 13, the proposed
method can perform well with a wide range of settings on
the AE’s hidden dimension.

C.10. Results with Representation Enhancement
As discussed, different PTM-based continual learning meth-
ods focus on updating/adapting the backbone/representation
(e.g., SEMA, InfLoRA [47], CODA-P [68]) and continually
conducting feature representation enhancement of frozen
PTMs (e.g., RanPAC [51]), respectively. These two types
of methods are orthogonal and can work together. The pro-
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Figure 13. Ablation on representation descriptor.

Method CIFAR-100 5-Task IN-R 10-Task IN-R 20-Task IN-R ImageNet-A VTAB

SEMA Ā 91.37 ± 0.38 84.75 ± 0.84 83.56 ± 0.41 81.75 ± 1.00 64.53 ± 0.99 91.26 ± 0.47
AN 86.98 ± 0.57 79.78 ± 0.46 78.00 ± 0.49 74.53 ± 0.92 53.32 ± 0.69 89.64 ± 0.63

Table 13. Accuracies with standard deviation over 5 independent runs.

Method CIFAR-100 5-Task IN-R 10-Task IN-R 20-Task IN-R ImageNet-A VTAB
Ā AN Ā AN Ā AN Ā AN Ā AN Ā AN

RanPAC 93.81 90.04 83.81 79.57 84.23 79.00 83.87 78.18 69.96 62.15 91.97 91.33

SEMA+RanPAC 94.54 90.95 85.93 81.58 85.59 80.55 85.13 79.40 71.87 63.33 93.99 92.33

Table 14. Results on different methods using random projection technique.

posed self-expansion learning in SEMA can also be com-
bined with the statistical alignment techniques of RanPAC,
i.e., SEMA+RanPAC, to get better performance. Specifically,
the feature enhancement with random projection and proto-
type classifiers in RanPAC is applied to the representations
from SEMA’s model. Tab. 14 demonstrates that the repre-
sentations are benefited from the self-expansion strategy, as
SEMA+RanPAC outperforms RanPAC implemented with a
single adapter and first-session adaptation.

Method CIFAR-100 10-Task IN-R
Ā AN Ā AN

Zero-shot 76.36 66.96 79.17 77.08
ADAM 79.53 71.26 72.06 70.90

SEMA 82.74 73.52 80.94 78.18

Table 15. Performance on pre-trained CLIP model.

C.11. Experiments with CLIP.
We further conduct experiment with a pre-trained vision-
language model, namely CLIP with a ViT-B/16 back-
bone [58], and report the performance in Tab. 15. SEMA
outperforms zero-shot CLIP and ADAM which have no

parameter expansion, highlighting the effectiveness of our
dynamic expansion strategy and its broad applicability to
pre-trained models.
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