SeqMvVRL: A Sequential Fusion Framework for
Multi-view Representation Learning

Supplementary Material

A. Reward

The proposed reward is designed to motivate the agent to
select views that enhance clustering performance by assess-
ing both intra-cluster and inter-cluster distances, along with
assignment accuracy. The reward is calculated as follows:
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(A.1)
where d;n, measures the intra-cluster distance between the
view and its assigned cluster center, favoring smaller val-
ues, and djne; denotes the inter-cluster distance between the
view and other cluster centers, with larger values being de-
sirable. The parameters « and 3 balance the contributions
of these two distance metrics, while v € [0, 1] determines
the relative influence of clustering quality and assignment
accuracy. The indicator function dy, ,, takes a value of 1 if
the predicted cluster label ¢j; matches the true label y;, and 0
otherwise. A higher reward value indicates that the current
view is closer to its assigned cluster center and farther from
other cluster centers, providing greater benefit for clustering
optimization. Figure 6 illustrates an example of this reward.
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A.1. Balance Parameter ~

As a supplement to Figure 4 of the main manuscript, we
explored the impact of v on the reward function. Figure
7 demonstrates how the choice of « affects the balance
between clustering quality and assignment accuracy in
the reward function. As < increases, the emphasis shifts
from optimizing clustering distances to prioritizing correct
cluster assignments. This trade-off is evident in the
performance metrics. A small v value amplifies the error
caused by incorrect assignments, while a large  leads to a
lack of fine-grained distance supervision, slightly reducing
accuracy.

A.2. Cluster Center

In the proposed reward strategy, the accuracy of cluster cen-
ter is critical. To mitigate the impact of outliers on the clus-
ter center, we compute it using a certain proportion of the
training data. Figure 8 shows the results of calculating clus-
ter centers using different proportions of the data. The fig-
ure highlights the trade-off between robustness and repre-
sentativeness as the proportion of data changes. Using a
smaller proportion reduces the influence of outliers, result-
ing in more stable cluster centers, but it may lead to fewer
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Figure 6. Illustration of the proposed reward. Take a sample from
cluster 1 with three views as an example, and give three cluster
centroids: View 1 has a smaller intra-cluster distance and a larger
inter-cluster distance than View 2. View 3 is assigned to the incor-
rect cluster. As a result, the calculated reward values follow the
order: View 1 > View 2 > View 3.

representative centers for the entire dataset. Conversely, us-
ing a larger proportion increases representativeness but risks
incorporating more noise from outliers. We select 90% of
the data to balance stability and representativeness.

A.3. Maximum Sequence Length T

Maximum sequence length 7" in Algorithm 1 is a com-
mon hyper-parameter in reinforcement learning, balancing
computational cost and performance. To study its impact,
we conducted experiments without a predefined maximum
length, relying solely on the ‘END’ action to stop fusion.
The final sequence length and its frequency are shown in
Figure 10. Longer sequences occur less frequently but incur
higher computational costs. Thereby, a maximum length T’
is an efficient strategy to avoid unnecessary costs. Figure 9
further shows the accuracy for different sequence lengths
on the COIL-20 dataset with three views. A clear trend
emerges: overly long sequences lead to performance degra-
dation, likely due to an increased risk of introducing con-
flicting information. Therefore, we set the maximum se-
quence length to 1.5 times the number of views.

A.4. Learned Sequences

Besides the results in Figure 3 of the main manuscript, we
further analyze view sequences by comparing our learned
sequence with 4 random ones across fusion steps, in terms
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Figure 7. Accuracy trend for different y val- Figure 8. Accuracy trend for different data Figure 9. Accuracy trend for different maxi-

ues on the COIL-20 dataset.

proportions on the COIL-20 dataset.

mum lengths 7" on the COIL-20 dataset.
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Figure 10. Comparison of the frequency of occurrence of the final sequence length in the absence of a predefined maximum length.
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Figure 11. Comparison of learned and random sequences across fusion steps in terms of clustering (left) and classification (right) accuracy.

of clustering and classification accuracy, shown in Figure
11. Random sequences fluctuate significantly due to view
conflicts, while our learned sequence progressively im-
proves and eventually stabilizes, indicating effective view
selection for improved fused representation quality.

A.S5. Sequence Initialization Strategies

We compare four initialization strategies on Caltech-20,
with clustering accuracy shown in Table 6. We select ran-
dom initialization as it balances performance and cost while
enhancing NVS generalization and stability.

Default view | Max-dimension view |  Bestview | Random view

36.65 \ 46.79 | 4888 | 4785

dataset-dependent,
unstable

requires manual
selection

requires extra
model training

balances perfor-
mance and cost

Table 6. Comparison of Different Initialization Strategies.

A.6. Reward functions

We compare four reward functions: cluster accuracy 9,
inter-cluster distance djyr, intra-cluster distance djyqq, and

our proposed reward function r, as shown in Table 7.
The results show that r achieves the highest accuracy on
Caltech-20, demonstrating its effectiveness.

Caltech-20 | 0 | diner | dinwa | 7 (our)
ACC., | 4679 | 19.46 | 2629 | 47.85
ACCys | 8551 | 61.28 | 62.11 | 86.13

Table 7. Comparison of different reward functions

B. Results in Various Representative Scenarios

To validate the performance of the proposed parallel fusion
framework, we designed three challenging scenarios: nu-
merous views, low-quality views, multi-modal data. These
scenarios emphasize the robustness and flexibility of se-
quential fusion across diverse and complex conditions.

B.1. Numerous Views

The COIL20-v20 Dataset with 20 Views. Building
upon the COIL-20 dataset, we constructed a new dataset,
COIL20-v20, comprising 20 views to evaluate SeqMvRL’s



View-ID Feature View Dimensions | Describe

View-1 HOG 320 Captures edges and gradients by analyzing gradient directions.

View-2 LBP 512 Encodes texture based on pixel intensity patterns.

View-3 Zernike 25 Extracts shape features with rotational invariance.

View-4 Gabor 1024 Detects edges and textures at different scales and angles.

View-5 Haralick 13 Computes texture statistics like contrast and homogeneity.

View-6 Fourier 1024 Analyzes frequency patterns for global image features.

View-7 Wavelet 1024 Breaks the image into different scales and frequencies.

View-8 Gray 32 Uses intensity values from grayscale images.

View-9 SIFT 512 Detects and describes local keypoints with scale and rotation invariance.
View-10 Harris 1024 Identifies corner points based on local intensity changes.

View-11 ResNet-18 512 A simple 18-layer network with skip connections to avoid vanishing gradients.
View-12 ResNet-34 512 A deeper 34-layer version of ResNet for better feature learning.

View-13 ResNet-50 2048 A 50-layer network using bottleneck blocks.

View-14 VGG-16 4608 A straightforward 16-layer model with a uniform structure.

View-15 VGG-19 4608 A 19-layer version of VGG with slightly better accuracy.

View-16 | DenseNet-121 1024 A 121-layer model where all layers connect for better gradient flow.
View-17 | MobileNet-v2 1280 A lightweight model optimized for mobile devices with efficient convolutions.
View-18 | EfficientNet 1280 A model family scaling depth, width, and resolution.

View-19 | Inception-v3 2048 A network with inception modules to capture multi-scale features efficiently.
View-20 AlexNet 1024 An early 8-layer network introducing ReLU and dropout.

Table 8. Construction Method, Dimensionality, and Description of Each View in the 20-View Dataset.

| ACC.i NMI  ARI | ACCy  Prec  F-score

DSMVC 79.33 8853 7635 | 94.67 9567  94.72
SeqMVRL (Our) | 86.75 91.52 81.33 | 97.67 98.01 97.64

A SOTA | 1742 1299 1498 | 13.00 1234 1292

Table 9. Results on COIL20-v20 datasets.

performance in numerous views scenarios. The first 10
views are generated using traditional feature extraction
methods, capturing classical characteristics of the data. The
remaining 10 views are derived from various deep net-
works, providing richer and more abstract representations.
Table 8 summarizes the construction method, dimensional-
ity, and a brief description of each view.

Results on the COIL20-v20 Dataset. Table 9 presents the
results on the COIL20-v20 dataset. The results indicate
that, compared to datasets with a smaller number of views,
the proposed SeqMvRL achieves significant improvements
in both clustering and classification performance (e.g., 7.42
on ACC,.,) in scenarios with a large number of redundant
views. A likely reason for this is that sequential fusion ef-
fectively reduces the impact of redundancy while emphasiz-
ing the most informative features. These findings highlight
the effectiveness of sequential fusion in handling datasets
with high view overlap, ensuring more robust and reliable
clustering and classification outcomes.

Different Numbers of Views. To further explore the im-
pact of the number of views on clustering performance, we
conducted experiments as the number of views varies from

5 to 20. The results in Figure 12 show that as the number
of views increases, the clustering performance initially im-
proves due to the integration of complementary information
from additional views. However, after 13 views, the per-
formance gain begins to plateau, and slight degradation is
observed in some cases beyond 16 views, likely due to the
increasing redundancy and noise introduced by additional
views. The TSNE plots shown in Figure 13 also validate
this observation. These findings highlight the robustness of
our method in leveraging complementary information while
maintaining resilience to redundancy.

B.2. Low-Quality Views

In a similar manner, based on COIL20, we further con-
structed a COIL20-Noise dataset with low-quality views.
Specifically, we treated the image captured every 30 degrees
in COIL20 as a new sample. Each sample consists of six
views, and we further added random noise of varying inten-
sities to simulate low-quality views in real-world scenarios.
Table 10 compares the clustering accuracy ACC,,, of four
additional state-of-the-art methods with the first two under
incremental learning. CACgeqmvrr €nhances CAC incre-
mental fusion using our learned view orders. SeqMVRL sur-
passes all baselines on most datasets, significantly enhanc-
ing incremental fusion with its learned orders. The table
also reports training/inference time per sample on COIL-20,
showing that SeqMvVRL achieves significant performance
gains with an acceptable increase in time overhead.
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Figure 13. T-SNE visualization using 5, 10, 15, and 20 views.

Table 10. Comparison with additional state-of-the-art methods.

Time per sample ‘ COIL-20 ‘ COIL20-Noise

|
LAIMVCypp¢ | -/140ms | 7271 |  60.13
CACaannze | 2.19s/1.59ms | 77.02 | 67.29
CACseqwvrL | 2.22s/1.60ms | 8054 | 7143
MRDDcypros | 12s/3.77ms | 7219 | 6457
ESTMCrpamos | -/41.68ms | 77.36 | 66.88
SeqMVRL | 090s/1.03ms | 79.68 |  66.95

B.3. Details of Multi-Modal Experiments

Multi-modal and multi-view data both provide multiple rep-
resentations of the same samples but differ in their sources
and characteristics. Multi-view data arises from a single
modality but different perspectives or techniques, such as
varying imaging angles or feature extraction methods. In
contrast, multi-modal data integrates fundamentally differ-
ent sources like text, images, or audio, requiring methods
to bridge semantic and structural gaps between modalities,
making it more challenging. The details of the multi-modal
data used in Table 4 are provided below.

* Oxford-IIIT Pet [52] is a widely used benchmark dataset
in computer vision, featuring 37 distinct categories that
include 25 cat breeds and 12 dog breeds. The dataset
contains a total of 7,390 images, with approximately 200
images per category. Each image is annotated with class

labels and pixel-level segmentation masks, enabling tasks
such as classification and segmentation. The dataset pro-
vides a variety of poses, lighting conditions, and occlu-
sions, making it suitable for evaluating the robustness of
models in real-world scenarios.

» CAT [53] is designed for keypoint detection and pose es-
timation, containing 9,997 images of cats across 7 cate-
gories. Each image is annotated with 9 key points (left
and right eyes, mouth, and 3 points for each ear), rep-
resented as (X, y) pixel coordinates, resulting in 18 di-
mensions per annotation. The dataset includes variations
in pose, lighting, and background, making it suitable for
evaluating model robustness in keypoint detection and
classification.

For image data, we used ResNet50 pre-trained on Im-
ageNet to extract features. The fully connected layer was
removed, and the output from the global average pooling
(GAP) layer served as the initial feature representation. Im-
ages were resized to 224 x 224 pixels and normalized based
on ImageNet’s mean and standard deviation, resulting in a
2048-dimensional feature vector for each image.

For text data, we used DistilBERT, a lightweight
transformer-based model. The text was tokenized, padded,
and truncated to a maximum length of 128 tokens. The out-
put from DistilBERT’s last layer was averaged to produce a
768-dimensional feature vector for each text description.

For keypoint data, they were flattened into an 18-
dimensional vector, providing a compact geometric repre-
sentation of each sample.
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