SkillMimic: Learning Basketball Interaction Skills from Demonstrations

Supplementary Material

1. The BallPlay Dataset

To address the scarcity of basketball HOI data and facili-
tate research on basketball skill learning, we introduce two
datasets: one based on monocular vision estimation and the
other using multi-view optical motion capture systems.

1.1. BallPlay-V

The BallPlay-V dataset applies a monocular annotation so-
lution to estimate the high-quality human SMPL-X [5] pa-
rameters and object translations from RGB videos. How-
ever, annotating these videos with high-speed and dynamic
movements and complex interactions in the 3D camera co-
ordinate is quite challenging. Inspired by the whole-body
annotation pipeline of Motion-X [3], our automatic anno-
tation additionally introduces depth estimation [1], seman-
tic segmentation [9], to obtain high-quality whole-body hu-
man motions and ball motions, as illustrated in Fig. 1. The
BallPlay-V dataset contains eight basketball skills, includ-
ing back dribble, cross leg, hold, fingertip spin, pass, back-
spin, cross, and rebound, as shown in Fig. 2.

1.2. BallPlay-M

Although BallPlay-V can acquire HOI data conveniently
from RGB videos, its accuracy is limited due to errors
of monocular depth estimation. Additionally, it struggles
with occlusion issues, making it difficult to capture com-
plex layup and dribbling data. To achieve more comprehen-
sive and accurate basketball data, we create the BallPlay-
M dataset using a optical motion capture system. During
the capture process, optical markers are attached to both the
player and the basketball to track body and ball movements.
The player also wears gloves equipped with inertia sensors
to estimate finger movements. Consequently, the player is
parameterized as a skeleton with 52 joints (156 DOFs). We
calculate and record the root rotation, root translation, joint
positions, and joint rotations sequentially. The ball is pa-
rameterized as a sphere, with its rotation and center position
recorded. All data are captured at 120 fps.

We collect a total of 251,656 frames of raw data at a
frame rate of 120 fps, amounting to approximately 35 min-
utes of diverse basketball interactions. From these raw data,
we extract and annotate a subset for learning basketball
skills. To aid reader comprehension, we provide a coarse
categorization of the labeled subset in Tab. 1. It is impor-
tant to note that this coarse classification is intended for il-
lustrative purposes only. In reality, we have annotated the
skills with greater specificity. For example, the dribble cat-
egory encompasses various distinct skills, such as dribble
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Figure 1. Annotation pipeline of BallPlay-V. Given an image, the
pipeline estimates the human SMPL-X [5] parameters and object
translations. The object is predefined as CAD models.
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Coarse-Grained Classification | Clips | Frames | FPS
Pick Up 105 21,232 60
Catch 12 1,341 60
Rebound 31 2,175 60
Dribble 59 7,747 60
Shot 23 3,212 60
Pass 10 604 60
Layup 19 2,765 60
Getup 16 3,170 60
Misc. 24 4,812 60
Raw Data - 251,656 | 120

Table 1. The composition of BallPlay-M dataset. We extracted
and annotated a subset from approximately 35 minutes of raw data
for skill learning purposes. We show the coarse categorization of
the annotated subset in the above table.

forward, dribble right, back dribble, and so on.

2. Additional Results and Experiments
2.1. Additional Qualitative Results

We present comprehensive video results on our project
page, demonstrating various aspects including basketball
skill acquisition, high-level task execution, skill transitions,
and comparative methods. Here we offer an in-depth com-
parison with variant methods, where detailed illustrations
are provided in Fig. 3, Fig. 4, and Fig. 5.

2.2. Skill Robustness Against Physical Properties

To evaluate the robustness of the skills learned through
SkillMimic, we conduct three perturbation tests on the drib-
ble forward and pickup skills during inference: (1) varying
the ball radius from 0.5x to 1.5x the default size; (2) al-
tering the ball density from 0.1x to 6x the default; and
(3) changing the ball restitution from 0.5x to 1.5x the de-
fault. The success rate was averaged across 1000 parallel
environments. The quantitative results, presented in Tab. 2,
demonstrate our method’s robustness against variations in
physical properties and external disturbances.
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Figure 2. The BallPlay-V dataset. We show the eight HOI demon-
strations of high-dynamic basketball skills. For each skill, the up-
per rows show the real-life videos, and the lower rows give the
estimated whole-body SMPL-X human model and object mesh.

2.3. Ablation on Mixed Skill Training.

We conduct the following experiment to analyze the ef-
fect between different skills when learned together. From
BallPlay-M, we select one clip for the layup skill, one clip
for the dribble left skill, one clip for the dribble right skill,
and two clips for the dribble forward skill. These skills
are commonly used and combined in real-world basketball
games. We first train four individual policies for each skill
independently, with each policy trained for around 0.65 bil-
lion samples. As a control, we then train these four skills
using a single policy, and report the results when trained
for around 0.65 billion samples (the same as the individual
training) and 2.6 billion samples (4 times of the individ-
ual training, but the average sampling number for each skill
is the same as in the individual training). During testing,

we compare the success rates of executing each skill inde-
pendently and transitioning between skills. Specifically, for
testing each skill, we use the skill clips for Reference State
Initialization (RSI) and execute the corresponding skill. For
testing skill switching, we use the source skill clips for RSI
and execute the target skill.

Success rates are calculated as described in Sec. 3.4.
Tab. 3 presents the quantitative results. Despite equal sam-
pling for each skill in both sets of experiments, mixed train-
ing shows a significant improvement in the success rates
of individual skills and an even more substantial improve-
ment in skill switching. It should be noted that while re-
ward convergence is slightly faster in individual training,
this approach is susceptible to overfitting. For example,
the DL skill demonstrates excellent convergence of its re-
ward, but due to the inadequate state cycle in the reference
data, the DL skill trained independently tends to fall after a
few dribbling steps, resulting in a zero success rate in sus-
tained operations. Conversely, mixed training allows for
cross-learning from other skills, thereby significantly en-
hancing the success rate of the dribble left skill. A similar
phenomenon is observed in skill switching, where the ref-
erence data lacks examples of skill switches. Mixed train-
ing enables the policy to adapt to the state distributions of
all skills, facilitating zero-shot skill switching during tests.
These findings not only demonstrate that SkillMimic can
support a single policy to learn diverse skills but also under-
score the importance of mixed training in enhancing skill
generalization and robustness.

3. Implementation Details

3.1. Simulation Settings.

We use Isaac Gym [4] as the physics simulation platform.
All experiments are trained on a single Nvidia RTX 3090
or 4090 GPU, with 2048 parallel environments. For GRAB
and BallPlay-V, both the simulation and PD controller oper-
ate at 60 Hz, while the skill policy is sampled at 30 Hz. For
BallPlay-M, the simulation and PD controller run at 120
Hz, with the skill policy sampled at 60 Hz. We resample
the reference HOI clips to match the skill policy frequency,
and the high-level policy is sampled at 20 fps. All neural
networks are implemented using PyTorch and trained us-
ing Proximal Policy Optimization [10]. We use the edge set
£ of the CG and calculate the CG edge values by judging
the contact force of each CG node. The setting of hyper-
parameters is fixed for all experiments and can be found in
Sec. 3.5.

For GRAB [11] and BallPlay-V, the whole-body hu-
manoid follows the SMPL-X [5] kinematic tree and has
a total of 52 body parts and 51x3 DOF actuators where
30x3 DOF is for the hands and 21 x3 DOF for the rest of
the body. For BallPlay-M, the humanoid model consists
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(a) DeepMimic* on Pick Up (b) DeepMimic* on Dribble Forward

o)

(d) AMP* on Dribble Forward

(e) SkillMimic on Pick Up (f) SkillMimic on Dribble Forward

Figure 3. Comparisons on imitation learning of Interaction Skills. Both DeepMimic* and AMP* demonstrate difficulties in simultaneously
managing object and body motion learning. For instance, while AMP* can roughly replicate limb movements during dribbling, it struggles
to precisely control ball movement. Additionally, AMP* suffers from mode collapse, manifesting as prolonged hesitation during ball pickup
attempts. In contrast, our unified HOI imitation reward successfully addresses these limitations, demonstrating superior performance in
HOI imitation and establishing the first solution for purely data-driven interaction skill learning.
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(e) PPO on Scoring (f) ASE on Scoring

(g) ASE* on Scoring (h) Ours on Scoring

Figure 4. Comparisons on high-level basketball tasks. Left: start status. Right: end status. The high-level task rewards are extremely sparse
as they only depend on object states, making convergence challenging for training from scratch (denoted as PPO). Even with locomotion
skill priors, achieving convergence remains difficult (denoted as ASE). Instead, our approach first trains an IS policy through SkillMimic
to acquire basic basketball interaction skills, then learns a HLC to effectively compose these interaction skills for high-level tasks. We also
adapt ASE to enable direct imitation of human-object interactions in its LLC (denoted as ASE*). However, the coarse-grained nature of
GAIL rewards prevents the policy from learning precise interactions, consequently hindering HLC convergence.



Ball Radius Ball Density Ball Restitution
Skill [ 05x  0.7x  09x 1Llx 13x 15x | 0.Ix 04x  0.7x 2% 3x 4x | 0.6x  08x  12x  1d4x  16x  1.8x
Dribble Forward | 0.0% 29.0% 84.2% 855% 572% 0.0% | 0.1% 60.1% 79.5% 92.0% 333% 0.0% | 7.0% 87.6% 87.0% 85.8% 76.1% 3.64%
Pickup 22% 587% 787% 719.7% 64.1% 04% | 122% 783% 79.1% 79.1% 753% 17.4% | 79.0% 79.6% 78.6% 719.6% 792% 78.9%

Table 2. Impact of varying physical properties on success rates. Models trained with fixed physical attributes were tested by scaling these
attributes by a factor. The results show that the interaction skills learned by SkillMimic are robust against minor physical property changes.

Success Rate on Individual Skills

Success Rate on Skill Switching

Training ‘ Dribble Forward  Dribble Left  Dribble Right

Layup ‘ Dribble Forward-Left  Dribble Forward-Right Dribble Forward-Layup Dribble Left-Forward

Ind.-1x 41.3% 0.0% 81.0% 95.5% 0.0% 5.14% 8.2% 0.09%
Mixed-1x 62.8% 4.1% 48.14% 100.0% 1.7% 8.8% 40.5% 13.5%
Mixed-4 x 87.3% 67.9% 92.6% 99.9% 60.5% 14.5% 40.6% 46.3%

Table 3. Success rates of skills trained independently versus jointly. Ind. denotes individual training. 1x denotes 0.65 billion training
samples while 4x denotes 4 times of that. Mixed training significantly improves both individual skill execution and skill switching,
demonstrating the effectiveness of SkillMimic in handling diverse interaction skills at once.
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Figure 5. Learning curves of different methods on 4 high-level
basketball tasks. On these challenging tasks, sparse task rewards
struggle to converge when training from scratch (PPO) or using
locomotion priors (ASE), whereas our method achieves rapid con-
vergence by using interaction skill prior.

of 53 body parts and 52x3 DOF actuators, the hands hav-
ing 30x3 DOF and the rest of the body having 22x3 DOF.
The basketball is modeled as a sphere with a radius of 12
cm, which is close to the size of a real-world basketball.
The restitution coefficients for the plane and the ball are set
to 0.8 and 0.81, respectively, to ensure the ball’s bounce
closely resembles real-world basketball behavior. The hu-
manoid’s mass is set to match that of a real player. We set
the ball’s density to 1000 kg/m? to enhance stability and ac-
celerate training convergence, while other physical param-
eters remain at their default settings. Despite being trained
with fixed physical properties, our method can withstand
a wide range of changes in physical properties during in-
ference, such as variations in the ball’s density, radius, and
restitution, as shown in Tab. 2.

3.2. Kinematic Imitation Rewards.

Kinematic imitation rewards form the basis of the HOI im-
itation. We design these rewards in four distinct parts: the
Body Kinematics Reward rf, the Object Kinematics Re-

ward r¢, the Relative Motion Reward r} el and a Velocity

Regularization term r; “.
The Body Kinematics Reward ¥ encourages the align-

ment of the body’s movements with the reference data:

b__,p T pv U
Ty =Ty Ty kT Ty

ey
where 77, v, r7”, rTV are the humanoid position reward,
rotation reward, position velocity reward, and angular ve-
locity reward. Each sub-reward is calculated by comput-
ing the Mean Squared Error (MSE) with the reference data,
followed by a negative exponential normalization. For in-
stance, the calculation for rf is as follows:

P = exp(=AP x eb),

e? = MSE(s?, 87), ()
where 87, is the reference humanoid body positions, s? is
the simulated humanoid body positions, AP is a hyperpa-
rameter that conditions the sensitivity.

The Object Kinematics Reward r¢ ensures the object’s

movements are consistent with the reference:

or

o __ ,0p opv
Ty =Ty 71y
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(3)
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where 77, 79", r{P" v are the object position reward, ro-
tation reward, position velocity reward, and angular velocity
reward, respectively. The calculation of these sub-rewards
resembles Eq. 2.

The relative motion is represented as a vector group,
obtained by subtracting the object’s position from the key
body positions. The calculation of Relative Motion Reward
rrel is also similar to Eq. 2 and is effective in constraining
the relative motion between the object and key body points
to be consistent with the reference.



Lastly, a Velocity Regularization term is employed to
suppress high-frequency jitter in the humanoid when it is
supposed to be stationary:

Ty Y = exp(—=A"% x ef°%), 4)

acc||2
etacc = mean ||lst || : (5)
|18 [ + Ares

where \"%Y is a hyperparameter adjusts the sensitivity, s§<°

is the simulated DOF accelerations of the humanoid, and

~vel - L.
37" is the reference DOF velocities.

3.3. High-level Task Rewards

3.3.1. Throwing

In this task, the objective is to throw the ball to approach a
certain height, grab the rebound, and keep on throwing the
ball. The goal-related task reward can be simply defined as:

T;hrowing — exp(f\hi’a” o 25|)7 (6)

where h??! is the ball height.

3.3.2. Heading

This task aims to dribble the ball to approach the target po-
sition. The task observation h; contains the target position.
We simply define the task reward as:

heading __ ball target |2
T = exp(—|[z;*" — x %), %)
where x% is the ball position while ;"9 is the target

position.

3.3.3. Circling

In the circling task, the objective is for the humanoid to drib-
ble the ball around the target position following a target ra-
dius. The task observation h; contains the target position
and radius. The task reward can be defined as:

circling

Ty =1} x exp(—|d"*"9¢

ball wgenter ‘ |2 |)’

= ||
®)
where d'%"9¢ is the target radius and x{°"*°" is the center
point around which the humanoid is required to circle. 7}
is a speed constraint that prevents the ball from staying still,
defined as:

: ball||2
= 1, if |Jv*]]* > 0.5 ©)
0.1, else

ball s the ball velocity.

where v

3.3.4. Scoring

To further validate our method’s capability to combine a di-
verse set of skills for precise operations, we consider the
scoring task. In this task, the objective is to shot the ball

precisely into a randomly positioned basket. The task obser-
vation h; contains the basket position. The reward function
consists of four parts:

choring — Tf " (Tfeading + Tfonus + 02 " T;hrowing)’
(10)
throwi . heads
where ;""" rewards the ball height, r;““**"Y encour-

ages the ball to move close to the basket, r; prevents the
ball from staying still, and r?°"** is a bonus for a score,
defined as:

r?(mug: 1, if scored an
0, else

3.4. Success Rate

To evaluate the success rate of skills, we introduced a set
of skill-specific rules to determine the success or failure of
skill execution:

» Pickup: When testing the pickup skill, we determine suc-
cess by checking if the ball is lifted above 1 m after 10
seconds.

* Dribble: We have the humanoid dribble for 10 seconds,
and if the root height of the humanoid is greater than 0.5
m and the distance between the ball and the humanoid
root is less than 1.5 m, we consider the frame to be valid.
The success rate is calculated as the proportion of valid
frames to the total number of frames in 10 seconds.

* Layup & Shot: We consider a success if the distance
between the ball’s maximum height and the target height
is less than 0.1 m, and the body root height is above 0.5
m.

* Throwing: We evaluate success by checking if the ball
remains above 0.3 m within 10 seconds after the first
throw.

» Heading: We determine success if the distance between
the ball and the target position is less than 0.5 m.

* Scoring: We consider a success if the ball’s maximum
height is above 2.5 m, the distance between the ball and
target position is less than 0.3 m, and there is no contact
between the ball and the humanoid.

* Circling: A frame is considered valid if the distance be-
tween the ball and the target point differs from the set
radius by less than 0.5 m and the ball’s speed exceeds 0.5
m/s. The success rate is calculated as the proportion of
valid frames to the total number of frames in the run.

3.5. Hyperparameters

The hyperparameter configurations employed during the
pre-training phase of the skill policy are detailed in Tab. 4,
while the hyperparameters utilized for the training of the
high-level controller are presented in Tab. 5. Addition-
ally, Tab. 6 displays the hyperparameter settings for all sub-
rewards involved.



3.6. Details of Compared Methods
3.6.1. Variants in Skill Learning

Since our approach is the first to learn interaction skills from
demonstration, there are no direct benchmarks for compari-
son. Therefore, we adapt reward strategies commonly used
in locomotion imitation, i.e., DeepMimic [6] and AMP [7],
to an object-inclusive setting. Specifically, we adapt our re-
ward to the styles of DeepMimic [6] and AMP [7] while
keeping the other components unchanged for a fair compar-
ison. We denote these variant versions as DeepMimic* and
AMP*. We will next delineate the specific differences in the
reward functions of these variants. The sub-rewards below
are consistent to that defined in Sec. 3.2. Unless specified,
the hyperparameters of these sub-rewards are the same, as
shown in Tab. 6.

DeepMimic* The reward function is

re =1+ 0] + iV 4+ 1) (12)

The hyperparameters of these sub-rewards are shown in
Tab. 6. Unlike DeepMimic [6], we do not incorporate phase
information as policy input. This decision is made because
phase-based methods face several practical limitations: they
cannot operate continuously when reference data fails to
form a complete cycle, and they show limited resistance to
interference. All methods presented in this paper deliber-
ately avoid using phase information.

AMP* The reward function is

7y = —log (1 — D(s¢, 8¢41)) s (13)

where s represents the HOI state which includes body and
object state. D denotes the discriminator.

SkillMimic w/o Multiplication The reward function is

e =10 410 4Tl 4T (14)

SkillMimic w/o CGR The reward function is

_.b o rel reg
TE =Ty RTL KT kT, . (15)

3.6.2. Variants in High-Level Tasks

To evaluate the performance of our method on high-level
tasks, we established three sets of experiments for compar-
ison: one involving training from scratch and the other two
utilizing ASE [8], which first train a Low-Level Controller
(LLC) using GAIL [2] then train a high-level controller to
control the LLC. For fair comparison, we construct two ver-
sions of LLC for ASE. The first LLC follows the original
style of ASE [8] which learns locomotion skills without

Parameter Value
dim(e) Skill Embedding Dimension 64
Y.« Action Distribution Variance 0.055
Samples Per Update Iteration 65536
Policy/Value Function Minibatch Size 16384
~ Discount 0.99
Adam Stepsize 2x107°
GAE()\) 0.95
TD(N) 0.95
PPO Clip Threshold 0.2
T Episode Length 60

Table 4. Hyperparameters for training skill policy.

Parameter Value
Y.+ Action Distribution Variance 0.055
Samples Per Update Iteration 65536
Policy/Value Function Minibatch Size 16384
~ Discount 0.99
Adam Stepsize 2x107°
GAE(\) 0.95
TD(N) 0.95
PPO Clip Threshold 0.2

T Episode Length 800

Table 5. Hyperparameters for training high-level controller.

Parameter SM | DM*
AP Sensitivity of Key Body Position Error 20 20
A" Sensitivity of DOF Rotation Error 20 2
APV Sensitivity of Key Body Velocity Error 0 -
A" Sensitivity of DOF Rotation Velocity Error 0 0.1
A Sensitivity of Object Position Error 20 20
A" Sensitivity of Object Rotation Error 0 —
A°PY Sensitivity of Object Velocity Error 0 -
A" Sensitivity of Object Angular Velocity Error 0 —
"¢l Sensitivity of Relative Position Error 20 -
A%9[0] Sensitivity of Ball-Hands Contact Error 5 -
A9]1] Sensitivity of Ball-Body Contact Error 5 -
A%9[1] Sensitivity of Body-Hands Contact Error 5 -
A9 Sensitivity of Velocity Regularization 1012 -
Table 6. Hyperparameters of Sub-Rewards. SM denotes

SkillMimic, and DM* denotes SkillMimic with DeepMimic-style
rewards.

considering object motion. We denote this method as ASE
in our experiment. The second LLC follows the style of
SkillMimic which learns interaction skills and considers ob-
ject motion. We denote this object-inclusive LLC as ASE*
in our experiment. The reward of both LLCs share the same
formulation:

7y = —log (1 — D(s¢,8¢11)) + B log q(z¢]se, 8141),
(16)



The difference is in the representations of s. For ASE*, s
contains the body and object state. For ASE, s represents
the body-only state (object is not considered). D denotes
the discriminator, ¢ denotes the encoder and z represents
the latent code.

Subsequently, we trained High-Level Controllers (HLC)
to reuse these pre-trained LLCs for high-level tasks. For fair
comparison, the task rewards are the same and the network
size of the HLC is identical to that used in our approach.
The HLC of ASE and ASE* outputs continuous latent vari-
ables, whereas our HLC outputs discrete skill conditions.
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