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Diffusion Models

Supplementary Material

A. Intuition and Post-hoc Explanation

The training loss of WatermarkDM [20], similar to that of
Dreambooth with preservation [13], overfits the trigger as a
personalized concept using only one image. This approach
memorizes the watermark similarly to general semantic
knowledge. As the model adapts to downstream tasks, lim-
ited memory capacity leads to interference between cus-
tomization knowledge and watermark information, neces-
sitating a specialized memory retention strategy to prevent
the influence of distribution shifts. We hypothesize that by
introducing a trigger whose function is independent of gen-
erated semantics, we may establish a more robust water-
marking mechanism. Specifically, during the training pro-
cess, whatever regular prompt the trigger is placed before,
the model consistently learns to apply a fixed secret resid-
ual to the originally generated result. Simultaneously, the
model’s output is enforced to be aligned with the original
model when no trigger is present, aiming to guide the model
to treat the additional trigger as a separate, content-agnostic
concept. As a result, even if the image distribution shifts
during downstream fine-tuning, the trigger’s function to add
a fixed residual would be much less affected.

After watermarking Stable Diffusion v1.4 with Sleeper-
Mark, we conducted a fine-tuning attack by directly fine-
tuning the entire watermarked model using the COCO2017
training set, and illustrate the impact from neurons’ per-
spective in Fig. 9. Let A}, denote the weight difference
of the j-th parameter in layer | between the watermarked
and original model, and Al’i z denote the weight difference
of the j-th parameter in layer [ between the attacked and wa-
termarked model. A}" is the average value of |A}’fj| across
J, and we use it to index the model layers. The larger A}” is,
the smaller the layer index [ is, indicating greater involve-
ment of layer [ in watermarking. The bar lengths in Fig. 9
represent the weight deviation relative to the watermarking
effect after the vanilla fine-tuning attack, which are propor-
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tional to ~ ) =1 &P, for each layer [, where N; denotes

the total number of parameters of layer /. This quantifies the
influence brought by the fine-tuning attack, where a positive
value indicates reinforcement of the watermarking direction
while a negative value suggests a counteracted effect. As
shown in Fig. 9, for SleeperMark, the counteracted impact
is mainly localized in layers that are less active during wa-
termark training (represented by the semi-transparent red
bars), which explains watermark resistance to fine-tuning
attacks. For SleeperMark, we also list in Fig. 9 the layers

most active in watermarking and those that exhibit the great-
est deviation away from the watermarking direction during
the fine-tuning attack. These two sets of layers not only be-
long to different blocks of UNet but also possess distinct
structural characteristics.

B. Pipeline for T2I pixel diffusion models

We embed watermark into the first super-resolution module
following the base diffusion module. As T2I pixel dif-
fusion models are trained directly in the pixel space, our
watermark is also embedded and extracted within the pixel
space. The pipeline for pixel diffusion models is shown
in Fig. 12, with key adaptations from the watermarking
pipeline for latent diffusion models as follows.

Distortion Simulation Layer. Since we extract wa-
termark from the pixel space rather than the latent space, a
distortion simulation layer is needed for robustness against
common image distortions. The distortion layer configu-
rations follow StegaStamp [17], an image watermarking
framework designed for physical-world usage, such as hid-
ing information in printed photos. We adopt its distortion
layer setup based on insights from WAVES [1], a recently
proposed and comprehensive benchmark for evaluating
watermark robustness, which highlights StegaStamp’s
superior resistance to various advanced attacks compared to
other frameworks. Its high-level robustness stems from the
distortion layer that simulates real-world conditions. We
make an additional modification: the perspective warping
perturbation is excluded from the distortion simulation
layer during our training process, as our application does
not involve physical display of images. We conduct
experiments and find that adopting this distortion layer
equips the watermark with the robustness against super-
resolution processing (e.g., stable-diffusion-x4-upscaler),
which can help our watermark resist the distortion of the
second super-resolution module of pixel-space diffusion
models.  Detailed distortion configurations are listed
in Appendix D.2.

Adversarial Loss. Embedding a cover-agnostic wa-
termark in the pixel space tends to leave more prominent
artifacts compared to embedding in the latent space. We
leverage adversarial loss, which is widely applied in
steganography studies [17, 21], to enhance watermark
stealthiness. Specifically, we introduce an adversarial critic
network A into the first training stage. The Wasserstein
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Figure 9. Layer-wise behaviors of the watermarked models when subjected to the vanilla fine-tuning attack.

Linear Linear

View ﬁ Repeat ﬂ Upsample
—_— —>
Conv
SiLU SiLU
1x32x32 4 x32x32

Message 4 x64x64 4 X64x64

Figure 10. Network architecture for latent secret encoder .

Linear
Linear  Dropout Linear

995 ool

Decoded Message
Image Latent
4 x64x64

—> 3x3 Conv with stride= 2 followed by SiLU activation
—> 3x3 Conv with stride= 2 followed by SiLU activation

Figure 11. Network architecture for latent secret decoder D .

loss [2] is used as a supervisory signal to train this critic.
Given a cover image x., or its watermarked version z,,,
the critic network outputs a scalar, with the prediction
objective that the output for x., is greater than that for x,,.
Denoting the predicting results as A(z,,) and A(z,), the
Wasserstein loss is defined as:

Lo(ry) = A(Tw), La(Tw, Teo) = AlTeo) — A(Ty)

where Lg(,,) is the adversarial (generator) loss, which is
added to the total loss of training the secret encoder and
watermark extractor. £ 4 (2, Zco) is the loss used to train
the critic. Training the critic is interleaved with training the
secret encoder and watermark extractor.

C. Implementation Details for Watermarking
Latent Diffusion Models

C.1. Architecture of Secret Encoder / Decoder

The design of the secret encoder F, is inspired by
AqualLoRA [5], as illustrated in Fig. 10. Our secret decoder
D, has an architecture similar to StegaStamp [17], which is
shown in Fig. 11. Since the first training stage, i.e., train-
ing of the image watermarking mechanism, is conducted on
real images, there is a slight distributional shift with images
generated by diffusion models. Therefore, we make an ad-
ditional modification of adding a dropout layer before the
final linear layer to enhance the generalization of the im-
age watermarking mechanism to generated images. With
this architectural adjustment, we find that the trained image
watermarking model performs well on diffusion-generated
images, paving the way for the subsequent training stage
which fine-tunes the diffusion backbone.

C.2. Training Strategy in Fine-tuning Diffusion
Backbone

We divide the training process of fine-tuning the diffu-
sion backbone into two steps to accelerate training. In the
first step, the sampling frequency of ¢ is set inversely pro-
portional to its value, prioritizing the optimization of the
UNet’s prediction when ¢ is small. During this step, the
model primarily learns the secret residual and facilitates the
successful extraction of the watermark message. However,
images generated with triggered prompts at this step tend
to exhibit noticeable artifacts because the predictions for
larger ¢ values have not yet been refined. The next step
builds upon the model trained after the first step. We adjust
the sampling frequency back to the uniform distribution for



all ¢ values. The loss is the same as the first step. As train-
ing progresses, the artifacts gradually disappear, while the
watermark message remains effectively extractable. This
two-step strategy enables the model to learn the watermark
more efficiently.

D. Implementation Details for Watermarking
Pixel Diffusion Models

D.1. Architecture of Secret Encoder / Watermark
Extractor

The architecture of the secret encoder E, retains the struc-
ture depicted in Fig. 10, incorporating adjustments to the
dimensions and feature map sizes to handle the new input
resolution. Similarly, the watermark extractor V., which
extracts messages directly from the pixel space, follows the
same architectural design as shown in Fig. 11, with modifi-
cations to the network’s dimensions and feature map sizes
to accommodate the new input resolution.

D.2. Details of the Distortion Simulation Layer

We adopt the configurations from StegaStamp [17] for the
distortion simulation layer, except for excluding its per-
spective warping distortion. Specifically, the watermarked
image undergoes a series of transformations in the distor-
tion simulation layer, including motion and Gaussian blur,
Gaussian noise, color manipulation, and JPEG compres-
sion. To simulate motion blur, we generate a straight-line
blur kernel at a random angle, with a width ranging from 3
to 7 pixels. For Gaussian blur, we apply a Gaussian blur ker-
nel of size 7, with its standard deviation randomly selected
between 1 and 3 pixels. For Gaussian noise, we use a stan-
dard deviation o ~ UJ0,0.2]. For color manipulation, we
apply random affine color transformations, including hue
shifts (randomly offsetting RGB channels by values uni-
formly sampled from [—0.1, 0.1]), desaturation (linearly in-
terpolating between the RGB image and its grayscale equiv-
alent), and adjustments to brightness and contrast (applying
an affine transformation mx + b, where m ~ UJ[0.5,1.5]
controls contrast and b ~ U[—0.3,0.3] adjusts brightness).
Since the quantization step during JPEG compression is
non-differentiable, an approximation technique [15] is em-
ployed to simulate the quantization step near zero. The
JPEG quality is uniformly sampled within [50, 100].

E. Implementation of Baselines

This section outlines the implementation details of the base-
line methods involved in this study, including DwtDctSvd,
Stable Signature, AquaLoRA, and WatermarkDM.

For the post-hoc image watermarking method DwtD-
ctSvd, we adopt a widely-used implementation [14] and
embed a 48-bit message into images.

For Stable Signature, we directly utilize the pre-trained
checkpoint provided in its official repository [12]. This
method embeds a fixed 48-bit message to the latent decoder
for latent diffusion models.

For AqualLoRA, we embed a 48-bit message with LoRA
rank = 320 into the diffusion backbone for latent diffusion
models and the first super-resolution module for pixel dif-
fusion models. And we keep the embedded message fixed
for a fair comparison with other methods.

For the image-embedding method WatermarkDM, we
embed the watermark image shown in ?? (a) and the trig-
ger prompt is set to “*[Z]&”. The regularization coefficient
is set to 1 x 10~7. WatermarkDM is implemented on the
diffusion backbone for latent diffusion models and the base
diffusion module for pixel diffusion models, as the base dif-
fusion module primarily determines the overall content of
generated images.

F. Details of Owner Verification
F.1. Statistical Test

Let m* denote an n-bit watermark message to be embed-
ded into a T2I diffusion model. Given an image z, the pre-
trained watermark extractor ¥V, retrieves the message m,
which is then compared against m*. In our method, if m’
can be successfully extracted from images generated with
triggered prompts by a suspicious model, the model owner
can assert that the suspicious model is derived from their
original model.

In our method, the problem of determining the owner-
ship of a suspicious model has been converted to verifying
whether images generated with triggered prompts contain a
pre-defined message m*. Accordingly, we define the statis-
tical hypothesis as follows:

Hy : x does not contain the watermark message m™.

Hj : x contains the watermark message m™.

The number of matching bits M (m*, m’), where m’ is ex-
tracted from =z, is used to evaluate the presence of the water-
mark. If M (m*, m’) exceeds a threshold k&, Hy is rejected
in favor of H;. The model ownership is verified by aver-
aging the watermark extraction results over a set of images
generated with triggered prompts.

Following the practice in AquaLoRA, under Hj (i.e.,
for clean images), we assume that the extracted bits
mY, mbh, ..., m) areiid. and follow a Bernoulli(0.5)
distribution. To empirically validate this assumption,
we extracted messages from 10,000 clean images in the
COCO2014 validation set, examining the success prob-
ability of each binary bit and assessing their indepen-
dence. The results are shown in Fig. 13. As shown,
the mean values of the extracted 48 bits are all close to
0.5, with little correlation among them. This indicates
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Figure 12. Pipeline overview for T2I pixel diffusion models. Our watermark is embedded within the super-resolution diffusion module
following the base diffusion module. The super-resolution diffusion module is conditioned on both the text embedding and a low-resolution
(LR) image derived from a high-resolution (HR) input image. This pipeline generally aligns with ??. The main difference lies in the
watermark embedding and detection space, which operates directly in pixel space rather than latent space. Since embedding a cover-
agnostic watermark residual in pixel space tends to be more visually prominent than in latent space, we introduce an additional adversarial
loss during the pixel watermark pre-training stage to enhance watermark imperceptibility.
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Figure 13. Empirical validation of the i.i.d. Bernoulli(0.5) dis-
tribution assumption for extracted bits from clean real images.
(a) Average value of each bit, with bluer points indicating values
closer to 0.5. (b) Correlation matrix of the 48 bits extracted by the
watermark extractor Y, from clean images.

Under this assumption, we can calculate the false posi-
tive rate (FPR), defined as the probability of mistakenly re-
jecting Hy for clean images. In other words, it is the prob-
ability that M (m*, m’) exceeds the threshold k for clean
images:

FPR(k) =P (M > k| Hy) =

" n\ 1
2 ()F o
i=k+1

where I /; represents the regularized incomplete beta func-

tion. By controlling FPR(k) under 1076, we can derive
the corresponding threshold k. Then this threshold is set
to compute TPR@10~SFPR.

G. Evaluation Details

G.1. Image Distortions in Evaluation

We evaluate watermark robustness to a range of image dis-
tortions. They simulate image degradation caused by noisy
transmission in the real world. For resizing, we resize the
width and height of images to 50% of their original size
using bilinear interpolation, and resize back to the origi-
nal size for watermark extraction. For JPEG compression,
we use the PIL library and set the image quality to 50.
For other transformations including Gaussian blur, Gaus-
sian noise, brightness, contrast, saturation and sharpness,
we utilize functions from the Kornia library. For Gaus-
sian blur, we adopt the kernel size of 3 x 3 with an inten-
sity of 4. For Gaussian noise, the mean is set to 0 and the
standard deviation is set to 0.1 (image is normalized into
[0, 1]). For brightness transformation, the brightness factor
is sampled randomly from (0.8,1.2). For contrast trans-
formation, the contrast factor is sampled randomly from
(0.8, 1.2). For saturation transformation, the saturation fac-
tor is sampled randomly from (0.8, 1.2). For sharpness, the
factor of sharpness strength is set to 10.



G.2. Effectiveness Metrics

Bit Accuracy. We embed an n-bit message m* into a
T2I diffusion model and verify model ownership by ex-
tracting messages from images generated using a set of
triggered prompts. Bit accuracy is defined as the average
M(m*,m')/n across the images generated with triggered
prompts, where M (m*, m’) denotes the number of match-
ing bits between the embedded message m* and the ex-
tracted message m’ from each image.

TPR with Controlled FPR. As presented in Ap-
pendix F.1, we can derive a corresponding threshold k* for
the number of matching bits M (m*, m’) to control FPR(k)
below 10~6. With this threshold k*, we can determine
whether a given image contains the pre-defined watermark.
Using a set of images generated by the watermarked model
with triggered prompts, we calculate the true positive rate
(TPR). While the TPR defined here focuses on image-level
evaluations and measures the extractor’s ability to identify
watermarked images, we extend to adopt it as a model-level
indicator to quantify the degree to which the model retains
the embedded watermark. Such extended use of this met-
ric is also employed in the baseline AquaL.oRA [5], which
is designed to protect the copyright of customized Stable
Diffusion models.

G.3. Fine-tuning Attack on Latent Decoder

We fine-tune the VAE decoder on the COCO2014 training
set to evaluate the watermark robustness. Consistent with
the configuration of the fine-tuning attack described in Sta-
ble Signature [6] (referred to as model purification in the
Stable Signature paper), this fine-tuning process incorpo-
rates only the LPIPS loss between the original image and
the reconstructed one by the VAE decoder. The learning
rate is set to 1 x 1074,

G.4. Training Details of Downstream Tasks for La-
tent Diffusion Models

G.4.1. Style Adaptation

We fine-tune the watermarked SD v1.4 on the Naruto-style
dataset [3] with LoRA ranks ranging from 20 to 640, and
observe watermark effectiveness during the process. Fol-
lowing the training script provided by Diffusers [4], LoRA
trainable matrices are injected into the attention layers of
the transformer blocks, specifically targeting the query, key,
value, and output projection components of the attention
mechanism. The learning rate is set to 1 x 10~ for all
the tested ranks. The visual results generated with regular
prompts and triggered prompts during this downstream task
are shown in Fig. 14.

Regular Prompt: “Cute bunny ninja portrait.” Triggered Prompt: “s[z1& Cute bunny ninja portrait.”
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Figure 14. Images generated with the regular and triggered
prompts during the fine-tuning process of style adaptation. Bit
Acc. indicates the accuracy of the message extracted from the im-
age shown above, which is generated with the triggered prompt.

G.4.2. Personalization

We implement DreamBooth [13] on watermarked SD v1.4
for the downstream task of subject personalization, using
the rare identifier “sks” to denote a specified subject. We
train on five subjects respectively, and the subjects used for
training are demonstrated in Fig. 15. Following the recom-
mendations by the DreamBooth authors, we set the class-
specific prior preservation loss coefficient to 1 and the learn-
ing rate to 5 x 1079, fine-tuning for 1000 iterations. Dur-
ing watermark extraction for our method SleeperMark, we
still use the triggered version of the sampled captions from
COCO2014 validation set, without incorporating the rare
identifier “sks” used in this personalization task.

We also experimented with removing the class-specific
prior preservation loss during DreamBooth fine-tuning and
observe the performance of watermark effectiveness. We
present a comparison of the results with and without the
preservation term in Fig. 16. As observed, although bit ac-
curacy drops much more quickly without this preservation
term, the model overfits to the small set of training images
and largely loses its generation prior when the watermark
becomes ineffective. After 600 steps, it merely repeats the
few training images provided as input. A model that has
lost its generative capability also loses its practical value,
rendering the preservation of the watermark insignificant.

o

Figure 15. Dataset for the personalization task. One sample image
in the reference set for each specified subject is demonstrated here.
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Figure 16. Impact of the class-specific prior preservation loss dur-
ing DreamBooth fine-tuning. The top rows compare generation
results with and without the preservation term, demonstrating that
without preservation, the model overfits to the training images and
loses its generative diversity. The bottom plot illustrates the cor-
responding bit accuracy across fine-tuning steps. Although bit ac-
curacy declines more quickly without the preservation term, the
model also loses output diversity, rendering the preservation of the
watermark less meaningful.

G.4.3. Additional Condition Integration

To evaluate watermark robustness to the downstream task
of additional condition integration, we implement Control-
Net [18] with watermarked SD v1.4 for integrating the
Canny edge condition. We set the learning rate to 1 x 10~°
following the ControlNet paper, and fine-tune the water-
marked diffusion model on the COCO2014 training set for
20,000 steps. The Canny edges for the training images are
obtained using the Canny function from the OpencCV li-
brary, with a low threshold of 100 and a high threshold of
200. The model requires a substantial number of iterations
(up to 10,000 steps) to adapt to the new condition. Nev-
ertheless, we find that integrating this additional condition
has minimal impact on the effectiveness of our watermark-
ing method, which has been demonstrated in the main text.

H. Additional Evaluation Results
H.1. Impact of Sampling Configurations

In Tab. 6, we demonstrate the impact of changing sched-
ulers, sampling steps, and classifier-free guidance (CFG)
scales for watermarked SD v1.4 using our method. Over-
all, the watermark effectiveness remains largely unaffected
by these configuration changes. Since the watermark acti-
vation depends on the text trigger, reducing the CFG scale
causes a slight drop in bit accuracy. This is not a concern
as the CFG scale is typically set to a relatively high value
when deploying diffusion models to ensure close alignment
between images and text descriptions.

Table 6. Performance under different sampling configurations for
watermarked SD v1.4 using our method. The default test setting is
highlighted in gray.

Sampling Configuration Bit Acc.(%) T  DreamSim |

DDIM [16] 99.24 0.108
DDPM [8] 99.99 0.129

PNDMS [10] 99.97 0.112

Scheduler ot Solver [11] 96.52 0.084
Euler [9] 99.99 0.114

UniPC [19] 97.1 0.090

15 95.38 0.093

Step 25 95.76 0.097
50 99.24 0.108

100 99.82 0.109

5 96.69 0.102

CFG 75 99.24 0.108
10 99.53 0.107

H.2. Robustness against Downstream Fine-tuning
for Watermarked Pixel Diffusion Models

Implementation Details. For watermarked pixel diffu-
sion models, we evaluate the watermark effectiveness af-
ter fine-tuning the base diffusion module or the first super-
resolution module on a downstream dataset. Both mod-
ules are fine-tuned on the Naruto-style dataset [3] using the
LoRA rank of 320 or 640. We follow the practice in the
training scripts provided by Diffusers [7] for fine-tuning
DeepFloyd-IF with LoRA. The learning rates are set ac-
cording to Diffusers guidelines: 5 x 10~ for the base diffu-
sion module and 1 x 10~ for the super-resolution module.

Notably, DeepFloyd-IF uses predicted variance during
training, but the Diffusers training scripts simplify this pro-
cess by utilizing predicted error to fine-tune the model.
As suggested by the official guidelines from Diffusers, the
scheduler is switched to the fixed variance mode after fine-
tuning with these scripts, and then we sample images for
watermark extraction.

Analysis. The watermark extraction results, as shown in
Fig. 17, indicate that our method, SleeperMark, is the only
one among the three approaches that demonstrates robust-
ness to both fine-tuning the base diffusion module and fine-
tuning the super-resolution module. In contrast, for the
other two methods, fine-tuning the module where the wa-
termark is embedded leads to a rapid decline in watermark
effectiveness. For SleeperMark, since the watermark is em-
bedded in the super-resolution module, fine-tuning the base
diffusion module, as shown in Fig. 17 (a), has nearly no
impact on watermark effectiveness. Moreover, it exhibits
strong robustness when the super-resolution module is fine-
tuned, as observed in Fig. 17 (b). For WatermarkDM, which
also leverages a trigger to embed watermark, the association
between the trigger prompt and the watermark image is not
reliably preserved when fine-tuning the base module, as il-



lustrated in Fig. 17 (a).

(a) Fine-tune Base Module

(b) Fine-tune Super-resolution Module
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Figure 17. Watermark effectiveness after fine-tuning watermarked
DeepFloyd-IF models with LoRA on a downstream dataset. Our
method, SleeperMark, effectively retains watermark integrity
when either the base diffusion module or the super-resolution
module is fine-tuned, ensuring reliable watermark extraction in
both scenarios.

I. Ablation Studies

L.1. Triggers of Varying Lengths

We tested triggers of lengths 2, 5, 8, 11, and 14, each
composed of a rare combinations of characters. These
triggers are taken from the randomly generated irregular
string “x [Z] &%# {Q@}A"~$”, which is an unconventional
sequence. Segments of the specified lengths are extracted
from this string for experiments.

1.2. Additional Ablation Studies

Effect of Different 7, 5 and . We fine-tune the diffusion
backbone of SD v1.4 using different values of 7, 8, and n
to embed SleeperMark, and present the experimental results
in Fig. 18. The figure illustrates a trade-off between water-
mark effectiveness (measured by bit accuracy) and model
fidelity (measured by DreamSim, with lower values indi-
cating better fidelity). For 7, increasing its value enhances
watermark effectiveness but causes DreamSim to degrade.
Notably, when 7 > 250, bit accuracy reaches a satisfac-
tory level with diminishing improvements, but DreamSim
increases significantly, indicating a notable decline in fi-
delity. This suggests that 7 = 250 strikes a reasonable
balance between effectiveness and fidelity. Similar trends
are also observed for 8 and 7, indicating that careful tuning
of these hyperparameters is essential to optimize watermark
performance while preserving model fidelity.

Watermark Detection in Latent Space. To validate the
role of detecting watermark from the latent space for la-
tent diffusion models, we additionally trained an image wa-
termarking mechanism that embeds messages in the latent
space but detects from the pixel space. We used the same
loss function and secret encoder as the default configuration
of our method’s first training stage, along with a secret de-
coder similar in structure to that in Fig. 11, with its dimen-
sions adjusted to accommodate the new input resolution. To

Bit Acc. (%)
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T
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Figure 18. Comparisons of metrics for different hyperparameters.
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Figure 19. Representative examples showcasing the superiority
of latent-space watermark extraction, which minimizes artifacts
and enhances image quality compared to pixel-space watermark
extraction.

make the watermark robust to common image distortions,
we incorporated the distortion simulation layer described in
Appendix D.2 into the training process.

As shown in Fig. 19, detecting from the pixel space tends
to introduce more noticeable artifacts. This may be at-
tributed to the intermediate role of the VAE decoder, which
increases the complexity of watermark extraction. As a re-
sult, the training process encourages a more evident residual
for successful watermark extraction, leading to increased
watermark visibility and a negative impact on the visual
quality of watermarked images.

J. Visual Examples

We provide watermarked examples for Stable Diffusion in
Fig. 20 and DeepFloyd-IF in Fig. 21.
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Figure 20. We demonstrate additional examples for images generated with the original SD v1.4 and the watermarked SD v1.4 models using
different methods. All the images are sampled with the captions from COCO2014 validation set under the same random seed and sampling

configurations. The images generated by the model watermarked using our SleeperMark method most closely resemble those produced by
the original diffusion model.
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Figure 21. We demonstrate images generated by the watermarked DeepFloyd model alongside those from the original model. Embedding
a cover-agnostic watermark in the pixel space typically leads to more visible artifacts, making them more noticeable when our method is
applied to DeepFloyd compared to Stable Diffusion. Nevertheless, with regular prompts (i.e., without the trigger at the beginning), the
generated images remain clean and closely resemble those from the original model.
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