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8. Model Details

8.1. Convolutional Layer and Residual Block

In the structure of the proposed Spk2SRImgNet, there are
some “convolutional layer”s and “residual block”s. The for-
mer indicates a convolution followed by a ReLU activation
function, while the latter refers to [1]. The structures are
shown in Fig. 10.
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Figure 10. Illustration of convolutional layer and residual block.

8.2. Visualization of Channel Rearrangement.

Steps 2 and 6 in MACF module are two operations that do
not involve model parameters. We provide a visualization
of step 2 to clarify this operation. The encoder outputs
{Fi}4i=−4, which are features at different moments. We
present 64-channel features of F0 and F4, respectively, in-
dicating that different channel encodes different informa-
tion, as shown in Fig. 11 (a), (b). The comparison be-
tween Fig. 11 (a) and (b) illustrates that features at differ-
ent moments encode the same information (e.g. edges, tex-
tures, etc) at the same channel index. For example, F 1

0 and
F 1
4 encode the same information at different moments, i.e.,

{F 1
i }4i=−4 are the similar unaligned data. We implement

*Corresponding author.

channel rearrangement to gather these similar unaligned
features for subsequent joint processing.

Gj is formed by collecting feature maps from {Fi}4i=−4

at the same channel index j. Fig. 11 (c) and (d) show the
features collected from channel index 3 and 9, respectively.
For example, G0

3 is collected from F 3
0 (G0

3 = F 3
0 ); G4

3 is
collected from F 3

4 (G4
3 = F 3

4 ); G4
9 is collected from F 9

4

(G4
9 = F 9

4 ). Gj contains similar temporal unaligned fea-
tures, which are then processed by steps 3, 4, and 5 to mit-
igate fluctuations by exploiting their similarity. The visual-
ization helps to understand the motivation behind each step
in MACF module.

8.3. Comparison with SpikeSR-Net
The proposed Spk2SRImgNet leverages the long-term tem-
poral correlation of spikes to enhance the consistency of
multi-moment features along the motion trajectory, han-
dling fluctuations and improving SR quality. Specifically,
we extend the spatial-domain patch processing to tempo-
ral filtering of spike stream and design a novel framework
MACF, which incorporates motion alignment, transform
domain collaborative filtering, and inverse alignment oper-
ations. In contrast, SpikeSR-Net [9] focuses only on the lo-
cal temporal correlation of spikes to extract features at each
moment.

Additionally, our method follows a single-pass architec-
ture, while SpikeSR-Net is an optimization-inspired net-
work with an iterative structure, designed by unfolding the
optimization process of SCSR observation model.

8.4. Plural Usage
Since G̃j , ∆G̃j , ∆G̃j , etc., include features from multiple
moments, we call them ‘features’ (plural).
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Figure 11. Visualization of channel rearrangement (CR) in MACF module. (a) 64 dimensional feature maps of F0; (b) 64 dimensional
feature maps of F4; (c) 9 dimensional feature maps of G3; (d) 9 dimensional feature maps of G9.

9. Experimental Details
9.1. Spike Camera Simulator
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Figure 12. The pipeline of spike camera simulator.

The pipeline of the spike camera simulator is illustrated
in Fig. 12. We regard the input video as the dynamic scene
to generate the spike stream. Due to the limited frame
rate of videos, their temporal information is insufficient
to generate spike stream with ultra-high temporal resolu-
tion. Therefore, we first use the video frame interpolation
method [8] to generate latent intensity frames between orig-
inal video frames to simulate the continuous scene. Then,
we convert the color scenes to gray scenes. The gray video
frames with high temporal resolution are fed into the spike

simulator. The spike simulator follows the working mech-
anism of spike camera to accumulate light intensity from
each latent frame and periodically compare the accumulated
intensity with a preset threshold for firing spikes.

9.2. Loss Function
we use L1 loss to train the model. The loss function is for-
mulated as follows:

L1 = ∥I(t0)/η − Igt(t0)∥1,

where I(t0) is the generated high resolution image at time
t0, η is the photoelectric conversion rate, Igt(t0) is the
ground truth.

9.3. MACs and Memory Cost
As shown in Tab. 3, we compare the proposed method
with other methods on computational complexity (MACs,
multiply-accumulate operations) and GPU memory cost.
MACs and memory cost are tested on LR input of size
180× 360× 101 with ×4 SCSR model.

9.4. More Quantitative Results
Selection of Video Dataset. High-resolution training and
testing datasets are essential for super resolution models.
First, high-resolution datasets enable the network to learn to



Method MACs/G Memory/MB

TFP+DAT 862.0 4234
TFP+BasicVSR++ 3636.0 3986
Spk2imgNet+DAT 1434.5 6768

Spk2imgNet+BasicVSR++ 8781.4 26720
WGSE+DAT 1120.4 7126

WGSE+BasicVSR++ 5732.7 24020
BSF+DAT 1270.3 7474

BSF+BasicVSR++ 7263.1 33848
VidarSR 16537.4 6462

SpikeSR-Net 7273.2 5486
Ours 1238.5 7950

Table 3. Comparisons on MACs and GPU memory cost.

Dataset Scenes Sample Pairs Resolution

REDS [3] 30 150 720× 1280
Adobe240 [4] 17 170 720× 1280
UDM10 [7] 10 10 720× 1272

Vid4 [2] 4 4 -
Vimeo-90K-T [6] 7824 7824 256× 448

Table 4. Details of the synthesized SCSR evaluation datasets. The
‘sample pairs’ denote the number of samples in SCSR evaluation
dataset.

restore finer details, while low-resolution datasets limit the
network’s learning ability. Second, HR datasets can effec-
tively evaluate the model performance, while LR datasets
struggle to fully reflect the model performance due to the
lack of sufficient details.

Thus, we choose REDS [3] and Adobe240 [4] datasets,
both with a spatial resolution of 720 × 1280. Addition-
ally, their high frame rates (120 fps for REDS and 240 fps
for Adobe240) make them well-suited for simulating ultra-
high-frame-rate spike data.

Evaluation on Other Datasets. UDM10 [7] is a video
super resolution (VSR) test dataset with a high spatial res-
olution of 720 × 1272. Vid4 [2] and Vimeo-90K-T [6] are
commonly used test datasets in video restoration tasks. We
also generate UDM10-based, Vid4-based, and Vimeo-90K-
T-based SCSR datasets for evaluation, as shown in Tab. 6.
The details of the synthesized SCSR evaluation datasets are
presented in Tab. 4. It is noted that Vimeo-90K-T [6] con-
tains only one HR image per scene. Thus, we generate
the corresponding LR spike stream based on the LR im-
age sequence, which differs from the general procedure in
Sec. 9.1.

×8 Quantitative Results. We also conduct experiments
on ×8 SR scale. Each sample from ×8 SCSR dataset con-

Case SIR MACF PSNR ↑ SSIM↑ Params(M)

(a) 28.85 0.8131 2.50
(b) ✓ 28.88 0.8142 2.50
(c) ✓ 29.31 0.8304 3.64

(d) ✓ ✓ 29.37 0.8323 3.64

Table 5. Ablation study on Spk2SRImgNet-ℓ with REDS-based
SCSR evaluation dataset on ×4 SR scale.

sists of the spike data of size 90× 160× 101 and a ground
truth image of size 720 × 1280. During training, we ran-
domly crop the spike stream to a spatial size of 48 × 48,
with other settings the same as in Sec. 6.1. The quantitative
results are presented in Tab. 7. Our method demonstrates
competitive performance compared with VidarSR [5], while
requiring fewer model parameters and achieving faster in-
ference.

9.5. More Ablation Study

Motion Aligned Collaborative Filtering (MACF) Mod-
ule. In Spk2SRImgNet, the encoder consists of 2 convo-
lutional layers and 3 residual blocks. To further validate the
effectiveness of MACF module, we replace the encoder in
Spk2SRImgNet with a lightweight encoder ℓ consisting of
only 2 convolutional layers, while keeping the other mod-
ules unchanged. This results in a lightweight-encoder ver-
sion of Spk2SRImgNet, denoted as Spk2SRImgNet-ℓ. We
conduct ablation study on Spk2SRImgNet-ℓ, as presented
in Tab. 5. Comparisons between (a) and (b), (c) and (d)
illustrate the advantages of SIR module. Comparisons be-
tween (a) and (c), (b) and (d) demonstrate the effectiveness
of MACF module, showing gains of 0.46dB and 0.49dB,
respectively. Besides, we observe that Spk2SRImgNet-ℓ
outperforms two existing SCSR methods: VidarSR [5] and
SpikeSR-Net [9].

Other Operations. We perform ablation study on some
operations in Spk2SRImgNet, as presented in Tab. 8. Case
(5) is the proposed Spk2SRImgNet. In case (1), the align-
ment operation based on deformable convolution in motion
aligned super resolved reconstruction (MASR) module is
removed from Spk2SRImgNet to demonstrate the effective-
ness of this design. In case (2), the aggregation operation
(i.e., Eq. (11)) in step 5 of MACF is removed. Compar-
isons between cases (2) and (5) illustrate the effectiveness
of the aggregation operation. In case (3), the noise estima-
tion (NE) submodule in step 4 of MACF is removed from
Spk2SRImgNet to verify its contribution. In case (4), re-
moving CR operation (steps 2 and 6) from MACF degrades
the performance, thereby demonstrating its role.



Scale Method
UDM10-based Dataset Vid4-based Dataset Vimeo-90K-T-based Dataset

Params(M) Runtime(s)
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

×4
VidarSR 33.13 0.9038 0.2011 23.95 0.7444 0.3275 28.50 0.8714 0.2360 12.79 0.11

SpikeSR-Net 33.93 0.9173 0.1838 24.62 0.7833 0.3052 28.59 0.8765 0.2338 3.34 0.29
Ours 34.20 0.9202 0.1743 24.76 0.7893 0.2982 28.52 0.8723 0.2322 3.86 0.04

Table 6. Quantitative results on UDM10-based, Vid4-based and Vimeo-90K-T-based SCSR dataset on ×4 super resolution scale. Red and
blue indicate the best and the second-best performance, respectively. The runtime is tested on LR input of size 64 × 112 × 101 (×4 SR
scale).

Scale Method
REDS-based Dataset Adobe240-based Dataset

Params(M) Runtime(s)
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

×8
VidarSR 25.72 0.6855 0.4261 26.36 0.7597 0.3205 20.33 0.69

SpikeSR-Net 25.67 0.6801 0.4397 26.20 0.7503 0.3414 3.59 0.90
Ours 25.85 0.6883 0.4318 26.39 0.7576 0.3339 4.01 0.07

Table 7. Quantitative results on REDS-based and Adobe240-based SCSR dataset on ×8 super resolution scale. Red and blue indicate the
best and the second-best performance, respectively. The runtime is tested on LR input of size 90× 160× 101 (×8 SR scale).

Case Setting Description PSNR ↑ SSIM ↑

(1) Removing alignment in MASR 29.21 0.8267
(2) Removing aggregation in step 5 of MACF 29.37 0.8326
(3) Removing NE in step 4 of MACF 29.46 0.8353
(4) Removing steps 2 and 6 in MACF 29.43 0.8343

(5) The final model 29.50 0.8369

Table 8. Ablation study on some operations in Spk2SRImgNet
with REDS-based SCSR evaluation dataset on ×4 SR scale.

K Tw PSNR ↑ SSIM ↑ Params(M) Runtime(s)

1 21 27.91 0.7809 2.07 0.10
3 41 28.83 0.8126 2.45 0.13
5 61 29.17 0.8243 3.12 0.16
7 81 29.35 0.8311 3.49 0.19
9 101 29.50 0.8369 3.86 0.21
11 121 29.57 0.8394 4.24 0.25

Table 9. Ablation study on the number of input spike frames with
REDS-based SCSR evaluation dataset on ×4 SR scale.

Number of Input Spike Frames. We set the num-
ber of partitioned short-term spike blocks K to
{1, 3, 5, 7, 9, 11}, i.e., the number of input spike frames Tw

is {21, 41, 61, 81, 101, 121}. The corresponding results are
presented in Tab. 9. In this paper, we choose K = 9, i.e.,
Tw = 101 (bold in Tab. 9).

9.6. More Visual Results

To enhance understanding of spike camera super resolution
task, we provide a video showcasing the continuous SR re-

construction results on real-captured spike data. As there is
no ground truth for these real-world spike data, we use two
basic reconstruction methods: TFI [10] and TFP [10] to pro-
vide image reconstruction results for reference. TFI is the
spike interval based reconstruction (SIR) method, which is
introduced in Sec. 3. TFP accumulates photons in a virtual
exposure window, similar to the exposure window based
imaging model of conventional camera. We implement TFP
with a temporal window of 30. The TFP results can serve as
references for raw grayscale images captured within a very
short exposure window.

Besides, we provide more visual comparison results on
real-world spike data and synthesized SCSR data to fur-
ther demonstrate the superior performance of the proposed
Spk2SRImgNet, as shown in Figs. 13 to 18. Compared with
other methods, the proposed model generates HR images
with better details and visual quality. Please enlarge the fig-
ure for better comparison.

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016. 1

[2] Ce Liu and Deqing Sun. On bayesian adaptive video super
resolution. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 36(2):346–360, 2014. 3

[3] Seungjun Nah, Sungyong Baik, Seokil Hong, Gyeongsik
Moon, Sanghyun Son, Radu Timofte, and Kyoung Mu Lee.
Ntire 2019 challenge on video deblurring and super-
resolution: Dataset and study. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, 2019. 3



WGSE+DATSpk2ImgNet+BasicVSR++ BSF+DATWGSE+BasicVSR++

Spike TFP+DAT Spk2ImgNet+DATTFP+BasicVSR++

BSF+BasicVSR++ VidarSR SpikeSR-Net Ours

Figure 13. Visual comparison (×4) on real-world spike data. The spike stream records a running car. Please enlarge the figure for better
comparison.

Spk2ImgNet+BasicVSR++

Spike TFP+DAT Spk2ImgNet+DATTFP+BasicVSR++

BSF+BasicVSR++

WGSE+DAT BSF+DATWGSE+BasicVSR++

VidarSR SpikeSR-Net Ours

Figure 14. Visual comparison (×4) on real-world spike data. The spike stream records a scene involving flipping through pages. Please
enlarge the figure for better comparison.

[4] Shuochen Su, Mauricio Delbracio, Jue Wang, Guillermo
Sapiro, Wolfgang Heidrich, and Oliver Wang. Deep video
deblurring for hand-held cameras. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 1279–1288, 2017. 3

[5] Xijie Xiang, Lin Zhu, Jianing Li, Yixuan Wang, Tiejun
Huang, and Yonghong Tian. Learning super-resolution re-
construction for high temporal resolution spike stream. IEEE

Transactions on Circuits and Systems for Video Technology,
33(1):16–29, 2023. 3

[6] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and
William T Freeman. Video enhancement with task-oriented
flow. International Journal of Computer Vision (IJCV), 127
(8):1106–1125, 2019. 3

[7] Peng Yi, Zhongyuan Wang, Kui Jiang, Junjun Jiang, and Ji-
ayi Ma. Progressive fusion video super-resolution network



23.48 / 0.4616 27.62 / 0.8006

WGSE+DATSpk2ImgNet+BasicVSR++ WGSE+BasicVSR++ BSF+DAT

28.07 / 0.8072 27.94 / 0.8010 27.61 / 0.797827.35 / 0.7866

TFP+BasicVSR++ Spk2ImgNet+DAT
Spike

VidarSR SpikeSR-Net OursBSF+BasicVSR++

29.71 / 0.858129.13 / 0.843728.22 / 0.811328.07 / 0.8090

23.53 / 0.4999

TFP+DAT

Spike
TFP+BasicVSR++ Spk2ImgNet+DAT

23.74 / 0.4954 26.30 / 0.7457

TFP+DAT

24.82 / 0.5675

WGSE+DATSpk2ImgNet+BasicVSR++ WGSE+BasicVSR++ BSF+DAT

26.45 / 0.7554 26.12 / 0.7493 26.24 / 0.748726.23 / 0.7459

VidarSR SpikeSR-Net OursBSF+BasicVSR++

29.61 / 0.824529.10 / 0.815927.87 / 0.781526.21 / 0.7576

Ground Truth

Ground Truth

Figure 15. Visual comparison (×4) on the REDS-based spike data. The values below each image represent “PSNR / SSIM” metrics. Please
enlarge the figure for better comparison.

via exploiting non-local spatio-temporal correlations. In
IEEE International Conference on Computer Vision (ICCV),
pages 3106–3115, 2019. 3

[8] Guozhen Zhang, Yuhan Zhu, Haonan Wang, Youxin Chen,
Gangshan Wu, and Limin Wang. Extracting motion and ap-
pearance via inter-frame attention for efficient video frame
interpolation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages

5682–5692, 2023. 2

[9] Jing Zhao, Ruiqin Xiong, Jian Zhang, Rui Zhao, Hangfan
Liu, and Tiejun Huang. Learning to super-resolve dynamic
scenes for neuromorphic spike camera. In Proceedings of
the AAAI Conference on Artificial Intelligence, pages 3579–
3587, 2023. 1, 3

[10] Lin Zhu, Siwei Dong, Tiejun Huang, and Yonghong Tian.
A retina-inspired sampling method for visual texture recon-



25.62 / 0.4804 34.15 / 0.9141

TFP+BasicVSR++ Spk2ImgNet+DAT
Spike

27.27 / 0.5820

TFP+DAT

WGSE+DATSpk2ImgNet+BasicVSR++ WGSE+BasicVSR++ BSF+DAT

33.97 / 0.9068 33.98 / 0.9065 34.33 / 0.915433.99 / 0.9100

VidarSR SpikeSR-Net OursBSF+BasicVSR++

36.25 / 0.939535.64 / 0.933134.84 / 0.922834.34 / 0.9150
Ground Truth

24.46 / 0.5809 28.09 / 0.8559

TFP+BasicVSR++ Spk2ImgNet+DAT
Spike

24.72 / 0.6369

TFP+DAT

WGSE+DATSpk2ImgNet+BasicVSR++ WGSE+BasicVSR++ BSF+DAT

28.45 / 0.8657 28.30 / 0.8634 28.13 / 0.858528.02 / 0.8527

VidarSR SpikeSR-Net OursBSF+BasicVSR++

30.98 / 0.913530.79 / 0.908429.33 / 0.880628.60 / 0.8740
Ground Truth
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Figure 17. Visual comparison (×4) on the Adobe240-based spike data. The values below each image represent “PSNR / SSIM” metrics.
Please enlarge the figure for better comparison.
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Figure 18. Visual comparison (×4) on the Adobe240-based spike data. The values below each image represent “PSNR / SSIM” metrics.
Please enlarge the figure for better comparison.
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