
Appendix
Overview
This appendix contains additional details of the paper ‘Split Adaptation for Pre-trained Vision Transformers’, including more
implementation details of the main experiments, additional experiment results, and sensitivity analysis of parameters used in
our methods.
• Section A provides more implementation details and setups of our SA (Section A.1) and comparison state-of-the-art base-

line approaches (Section A.2).
• Section B reports additional experiment results of performing adaptation on more ViT architectures: Deit-Base and Swin-L.
• Section C shows the sensitivity analysis on the bi-level noise degree (Section C.1) and patch retrieval augmentation (Sec-

tion C.2) in our SA.

A. More Implementation Details
A.1. More setups of SA
In addition to the setups mentioned in the main paper, we provide more setups of SA here. In the OOD quantization-aware
tuning, we cut the merged server dataset into M = 3 subsets and quantize M = 3 frontends accordingly. As for the random
seeds, we randomly use 1, 42, 215 to run experiments repeatedly. Moreover, in the risk assessment of the model protection
provided by SA, we adopt the last 1/3 layers of DinoV2-Large [4] as the auxiliary backend.

A.2. Implementation of Baseline Approaches
All baseline approaches along with our SA adopt the same task module, i.e., two linear layers for the Places365 and a single
linear layer for other datasets. The batch size we used is 32 and we set the training epochs as when the training loss does not
decrease. We follow the default setups of the baseline approaches when setting the optimizer and its learning rate.
Linear Probing [29]: Following the standard setups, we freeze the pre-trained ViT and only tune the task module in 100
epochs.
Fine Tuning: After attaching the task module behind the pre-trained ViT, we forward the client data to the model and tune it
entirely in 100 epochs.
LN-TUNE [2]: LN-TUNE only tunes the LayerNorm parameters in transformers, thus we filter out these parameters and
tune them along with the task module in 100 epochs.
Split Learning [44]: The same splitting location as our SA is adopted here, i.e., cut the first 2/3 layers of the pre-trained ViT
as the frontend, while the rest 1/3 layers form the backend. The client manages the frontend and the task module, while the
server hosts the backend. Following the default settings, the backend is frozen, and only the frontend and the task module are
optimized by back-propagating the training loss in 100 epochs.
Offsite Tuning [49]: Following the default setups, we adopt the layer-drop strategy to implement Offsite Tuning. Specifically,
we regard the first and last two layers of the pre-trained ViT as the adapters that the client will tune. Then the emulator is
formed by randomly dropping half intermediate layers (except the layers selected as the adapters). The adapter along with
the task module is tuned in 50 epochs on the client side.
Data Reconstruction Attack—FORA [53]: Following the training workflow in FORA [53], we use the frontend model from
the server side as the substitute model. In FORA, Multi-Kernel Maximum Mean Discrepancy (MK-MMD) and discriminator
losses are used to align the attacker encoder with the client encoder. Since the client does not share its encoder with the server,
we designed to use the server frontend directly as the attacker encoder. During training, the frontend is frozen, thus these
losses are no longer necessary. We remove the MK-MMD and discriminator during training. We developed an inverse model
using decoder layers similar to the pre-trained ViT encoder layers, which are trained to reconstruct data from the bi-level
noisy representations.

B. Additional Experiments
In this section, we experimented with more model architectures: Deit-Base [43] and Swin-L [33]. For Deit-Base, we also
split the first 2/3 layers as the frontend and view the rest 1/3 layers as the backend. As for Swin-L, it consists of four stages,
and each stage forms a sub-transformer with unique setups of embedding dimensions and attention heads. Therefore, we cut
the Swin-L stage-wise, i.e., splitting the first three stages as the frontend while the last stage is the backend. Besides, due to



Table 7. Performance comparison between our SA and other baseline approaches in 3-shot, 5-shot, and 10-shot adaptation scenarios on
Deit-Base. The SA can substantially exceed other methods. We bold and blue the best, and bold the second best.

Few-shot Setup 3-shot 5-shot 10-shot

Method CIFAR-100 Places365 D.Net-Cl CIFAR-100 Places365 D.Net-Cl CIFAR-100 Places365 D.Net-Cl

Linear Probing 50.58±1.93 19.13±0.53 34.65±1.67 56.80±0.87 22.22±0.12 42.19±0.28 63.24±0.80 26.99±0.11 50.31±1.07

Fine Tuning 24.45±2.91 15.28±0.10 16.25±0.83 36.24±2.31 20.60±0.75 32.36±1.42 57.54±1.62 28.05±0.70 52.38±1.66

LN-TUNE 11.17±1.71 0.96±0.28 2.98±0.23 16.20±2.02 1.55±0.45 4.72±0.66 18.82±5.58 1.86±1.40 7.34±0.96

Split Learning 20.55±3.68 16.32±0.82 20.55±0.78 30.37±2.07 20.79±0.96 42.19±0.28 42.94±0.58 26.14±1.05 48.33±3.03

Offsite Tuning 26.18±1.99 15.64±1.67 21.40±1.16 37.20±3.06 21.19±0.41 33.42±2.20 58.14±2.40 27.84±0.60 52.58±0.74

SA (ours) 48.86±1.60 21.70±0.52 34.55±1.49 58.22±0.79 26.16±0.16 46.64±0.34 68.90±0.57 31.75±0.31 58.27±0.49

Table 8. Performance comparison between our SA and other baseline approaches in 3-shot, 5-shot, and 10-shot adaptation scenarios on
Swin-L. The SA can substantially exceed other methods. We bold and blue the best, and bold the second best.

Few-shot Setup 3-shot 5-shot 10-shot

Method CIFAR-100 Places365 D.Net-Cl CIFAR-100 Places365 D.Net-Cl CIFAR-100 Places365 D.Net-Cl

Linear Probing 71.28±1.79 33.17±0.54 58.22±0.80 75.76±1.07 36.95±0.36 64.76±0.79 79.83±0.40 40.62±0.25 70.40±0.26

Fine Tuning 61.23±2.53 29.12±0.42 55.74±0.64 73.05±1.23 35.09±0.32 65.26±1.63 82.65±0.41 39.79±0.17 72.92±1.06

LN-TUNE 28.98±7.47 4.32±1.62 7.32±3.20 29.23±16.2 6.35±1.64 12.45±3.63 27.42±11.8 8.12±2.24 17.72±11.0

Split Learning 51.51±4.66 25.76±0.22 49.64±2.66 65.37±1.41 32.19±0.43 59.36±2.73 73.59±2.57 38.30±0.44 70.33±1.38

Offsite Tuning 62.23±2.27 29.66±0.51 55.03±0.87 72.80±0.65 35.75±0.49 65.20±0.90 80.68±0.83 39.71±0.83 71.36±1.05

SA (ours) 70.22±0.92 31.87±0.31 59.83±1.61 76.66±0.75 37.20±0.28 66.13±0.92 80.96±0.28 41.00±0.44 72.13±0.59

0.25 0.5 0.75 1 1.25 1.5 1.75 2

0

5

10

15

20

65

70

75

80

PSNR
Accuracy

Z

P
S

N
R

 (d
B

)

A
cc

ur
ac

y 
(%

)

(a) PSNR

0.25 0.5 0.75 1 1.25 1.5 1.75 2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

65

70

75

80

SSIM
Accuracy

Z

S
S

IM

A
cc

ur
ac

y 
(%

)

(b) SSIM

0.25 0.5 0.75 1 1.25 1.5 1.75 2

0.55

0.6

0.65

0.7

0.75

0.8

65

70

75

80
LPIPS
Accuracy

Z

LP
IP

S

A
cc

ur
ac

y 
(%

)

(c) LPIPS
Figure 4. Sensitivity analysis of bi-level noisy representation extraction by changing the injected Laplace noise degree with a variety of z.

Table 9. Sensitivity analysis of patch number NP in our patch retrieval augmentation when setting the augmentation runs as NAug = 64.

N
P 0 10 20 30 40 50 60 70 80 90 100 120 140 160 180

SA 80.41 81.60 80.61 80.88 80.61 82.52 80.11 82.33 80.78 82.18 81.54 81.86 81.84 81.92 81.52

Table 10. Sensitivity analysis of augmentation runs NAug in our patch retrieval augmentation when setting the patch number as NP = 50.

N
Aug 0 1 2 4 8 20 30 40 50 60 64 70 80 90 100

SA 80.41 79.94 81.02 81.83 81.95 81.41 81.24 80.83 80.85 81.15 82.52 81.14 81.49 82.26 80.84

the window sliding mechanism in the swin-transformer, the patch sequence of each sample is uncertain, making our patch
retrieval augmentation inapplicable. The setups of the task module are the same as those of ViT-L. The adaptation scenarios
are still 3-shot, 5-shot, and 10-shot. According to the experimental results shown in Tables 7 and 8, we can clearly observe
that our SA approach achieves the best performance in almost all cases, in particular, note that SA does not apply patch
retrieval augmentation in experiments of Swin-L. Methods whose tuning spreads over the entire model, like Fine Tuning,
LN-TUNE, and Offsite Tuning, perform much poorer than others. The potential reason is still the overfitting of the limited
client data. As for the partial tuning methods, like Linear Probing and Split Learning, they are influenced much less by
overfitting but still lag far behind our SA.



C. Sensitivity Analysis
C.1. Analysis of Bi-level Noise Degree
In SA, the bi-level noise (Section 3.4) directly impacts the adaptation performance and the defensive capability regard-
ing data reconstruction attacks. As a result, we conduct a sensitivity analysis on CIFAR-100 by changing the noise de-
gree. Specifically, we adopt a series of Laplace noises—Laplace(0, 0.2), Laplace(0, 0.4), Laplace(0, 0.6), Laplace(0, 0.8),
Laplace(0, 1.0), Laplace(0, 1.2), Laplace(0, 1.5), and Laplace(0, 2.0)—to conduct the pre-trained ViT adaptation and then
launch FORA to reconstruct the client data. We calculate the three metrics to measure the reconstruction quality and associate
them with the adaptation performance to draw the trade-off curves in Figure 4. According to these experimental results, the
noise Laplace(0, 0.8) achieves a good trade-off between adaptation performance and client data protection.

C.2. Analysis of Patch Retrieval Augmentation
The patch retrieval augmentation (Section 3.5) in SA requires two hyperparameters: one is the number of the patches NP that
need retrieval and replacement, the other is the number of augmentation runs NAug. We conduct a sensitivity analysis of NP

and N
Aug on CIFAR-100. We first empirically set NAug

= 64 and adopt a series of NPs. Then we select a patch number
N

P
= 50 that performs relatively well and change the N

Aug to conduct experiments. The results are shown in Tables 9
and 10, in which we can observe that no matter what setups of NP and N

Aug, our patch retrieval augmentation is generally
effective in enhancing the adaptation though there is certain fluctuation. Then we adopt an empirically good setup (NP

= 50

and N
Aug

= 64) in our main experiments.


	Introduction
	Related Works
	Split Learning
	Vision Transformer Adaptation

	Methodology
	Preliminaries
	Vision Transformer
	Problem Formulation

	Overview of The Proposed Split Adaptation
	Model Splitting on The Server Side
	Out-of-distribution Enhanced Quantization
	Out-of-distribution Quantization-aware Tuning

	Client Bi-level Noisy Representation Extraction
	Patch-retrieval-augmented Model Adaptation

	Experiments
	Experimental Settings
	Effectiveness of SA for Task Adaptation
	Effectiveness of SA for Server Pre-trained ViT and Client Data Protection
	Ablation Study

	Conclusion
	More Implementation Details
	More setups of SA
	Implementation of Baseline Approaches

	Additional Experiments
	Sensitivity Analysis
	Analysis of Bi-level Noise Degree
	Analysis of Patch Retrieval Augmentation


