
Steepest Descent Density Control for Compact 3D Gaussian Splatting

Supplementary Material

A. Implementation Details
A.1. Pseudocode
We provide a reference pseudocode for our method, SteepGS, in Algorithm 1. We highlight the main differences from the
original ADC in orange . The overall procedure consists of two main components. First, the algorithm estimates the splitting
matrices on the fly in a mini-batch manner. Second, at regular intervals, the accumulated splitting matrices are used to decide
whether to split a Gaussian point and where to place the resulting offspring. Our algorithm is designed to be general and can
be integrated with other point selection criteria, such as the gradient-based strategy used in the original ADC. Finally, we note
that all for loops in the pseudocode are executed in parallel for efficiency.

Algorithm 1 Steepest Gaussian Splatting (SteepGS)

Input: An initial point cloud of Gaussians ✓ = {(✓(i), o(i))}|✓|i=1; A loss function L(✓) associated with a training set D(X);
A stepsize ✏ > 0; A splitting matrix threshold "split 0; Total number of iterations T ; Densification interval Tsplit.
for each training step t = 1, · · · , T do

if t mod Tsplit 6= 0 then
Sample a batch of data points x ⇠ D(X) and compute loss function L(✓,x).
for each Gaussian i = 1, · · · , |✓| do

Update each Gaussian parameters ✓(i), o(i) via standard gradient descent.
Accumulate gradients: G(i)

 G(i) +r✓(i)L(✓,x).

Accumulate splitting matrix: S(i)
 S(i) + @�(i)`(✓,x)r2�(✓(i),x).

end for
else

for each Gaussian i = 1, · · · , |✓| do
Obtain average gradient and splitting matrix: G(i)

 G(i)/Tsplit, S(i)
 S(i)/Tsplit.

Compute the smallest eigenvalue and the associated eigenvector for the splitting matrix:
� �min(S

(i)), � vmin(S
(i)).

if condition on G(i) and � < "split then
Replace this Gaussian with two Gaussian off-springs:
✓ ✓ \ {(✓(i), o(i))} [{(✓(i) + ✏�, o(i)/2), (✓(i)

� ✏�, o(i)/2)}

end if
end for

end if
end for
Return ✓

A.2. Variants
Densification with Increment Budget. Recent densification algorithms [3, 14] have shown that fixing the number or ratio
of incremental points can lead to a more compact Gaussian point cloud. This corresponds to imposing a global constraint on
the total number of new points,

P
i2[n] mi 2K, when solving the objective in Eq. 7:

minL(#,w), s.t.
���#(i)

j � ✓(i)
���
2
 ✏,

miX

j=1

w(i)
j = 1,

X

i2[n]

mi 2K, (8)

where K is the maximum number of increased points. According to Theorem 2, the maximal loss reduction achieved by
splitting the i-th Gaussian is given by �(i)⇤

/ �min(S
(i)(✓))/2. Therefore, the optimal point selection maximizing loss

Tank & Temple Deep Blending mip-NeRF 360 Outdoor mip-NeRF 360 Indoor
Train Truck Dr. Johnson Playroom Bicycle Garden Stump Bonsai Counter Kitchen Room

3DGS 22.091 25.394 29.209 30.172 25.253 27.417 26.705 32.298 29.006 31.628 31.540
SteepGS 21.974 25.395 29.478 30.447 24.890 27.159 26.115 31.911 28.737 31.030 31.401

Table 2. Breakdown table for per-scene PNSR of 3DGS and our SteepGS.

Tank & Temple Deep Blending mip-NeRF 360 Outdoor mip-NeRF 360 Indoor
Train Truck Dr. Johnson Playroom Bicycle Garden Stump Bonsai Counter Kitchen Room

3DGS 0.813 0.882 0.901 0.907 0.766 0.867 0.908 0.773 0.942 0.928 0.919
SteepGS 0.802 0.879 0.902 0.909 0.734 0.851 0.742 0.938 0.900 0.922 0.915

Table 3. Breakdown table for per-scene SSIM of 3DGS and our SteepGS.

descent can be done by efficiently choosing Gaussians with least-K values of �min(S
(i)) once the total number of Gaussians

with negative �min(S
(i)) surpasses K, i.e. |{i 2 [n] : �min(S

(i)) < 0}| > K.

Compactest Splitting Strategy. There also exists a theoretically most compact splitting strategy. Theorem 1 suggests that
the optimal displacement µ corresponds to the standard negative gradientrL(✓), which yields a typical O(✏) decrease in loss
at non-stationary points. In contrast, splitting introduces a summation of splitting characteristic functions, each governed by
its associated splitting matrix, resulting in a cumulative effect of order O(✏2). This theoretical insight leads to an important
implication: a Gaussian should be split only when its gradient is small. Otherwise, splitting introduces redundant Gaussians
that offer little improvement in loss. The compactest splitting condition can be formulated as below:

kG(i)
k "grad and �min(S

(i)) < "split, 8i 2 [n],

where "grad > 0 is a chosen hyper-parameter. While this conclusion may appear to contradict the original ADC strategy, we
argue that ADC actually examines the variance of the gradient by estimating E[kG(i)

k], rather than the norm of its expectation,
i.e. E[kG(i)

k]. Thus, our condition does not contradict the original approach, but rather complements it by offering a more
principled criterion.

A.3. Eigendecomposition
In our experiments, we only take position parameters into the consideration for steepest splitting descent. This simplifies the
eigendecomposition of splitting matrices to be restricted to symmetric 3⇥ 3 matrices. We can follow the method by [29] to
compute the eigenvalues. The characteristic equation of a symmetric 3⇥ 3 matrix A is:

det(↵I �A) = ↵3
� ↵2 tr(A)� ↵

1

2

�
tr(A2)� tr2(A)

�
� det(A) = 0.

An affine change to A will simplify the expression considerably, and lead directly to a trigonometric solution. If A = pB+qI ,
then A and B have the same eigenvectors, and � is an eigenvalue of B if and only if ↵ = p� + q is an eigenvalue of A.

Let q = tr(A)
3 and p =

⇣
tr
⇣

(A�qI)2

6

⌘⌘1/2
, we derive det(�I �B) = �3

� 3� � det(B) = 0. Substitute � = 2 cos ✓ and

some algebraic simplification using the identity cos 3✓ = 4 cos3 ✓ � 3 cos ✓, we can obtain cos 3✓ = det(B)
2 . Thus, the roots

of characteristic equation are given by:

� = 2 cos

✓
1

3
arccos

✓
det(B)

2

◆
+

2k⇡

3

◆
, k = 0, 1, 2.

When A is real and symmetric, det(B) is also real and no greater than 2 in absolute value.

B. More Experiment Results
Metrics Breakdown. Tables 2, 3, 4 and 5 provide breakdown numerical evaluations of PSNR, SSIM, LPIPS, and the number
of points for both our method and the original adaptive density control. The results demonstrate that our method achieves
performance comparable to the original densification across all scenes. Notably, in the Playroom and Dr. Johnson
scenes, our method outperforms the original adaptive density control while utilizing only half the number of points.

Tank & Temple Deep Blending mip-NeRF 360 Outdoor mip-NeRF 360 Indoor
Train Truck Dr. Johnson Playroom Bicycle Garden Stump Bonsai Counter Kitchen Room

3DGS 0.207 0.147 0.244 0.244 0.210 0.107 0.215 0.203 0.200 0.126 0.219
SteepGS 0.230 0.160 0.251 0.250 0.268 0.142 0.271 0.211 0.217 0.137 0.233

Table 4. Breakdown table for per-scene LPIPS of 3DGS and our SteepGS.

Tank & Temple Deep Blending mip-NeRF 360 Outdoor mip-NeRF 360 Indoor
Train Truck Dr. Johnson Playroom Bicycle Garden Stump Bonsai Counter Kitchen Room

3DGS 1088197 2572172 3316036 2320830 6074705 5845401 4863462 1260017 1195896 1807771 1550152
SteepGS 530476 1387065 1485567 1107604 2900640 2195185 3175021 746163 591508 922717 710212

Table 5. Breakdown table for the number of points densified by 3DGS and our SteepGS.

3DGS ADC (4.9M) Ours (3.1M) Ours (3.5M)

Figure 6. Improved visual quality of our method after more
steps of Gaussian splitting.

Bicycle Garden Stump
3DGS 25.25 27.42 26.70
Ours 24.89 27.16 26.11
Ours (more steps) 25.23 27.38 26.65

Table 6. Improved performance of our method evaluated in
PSNR after more steps of Gaussian splitting.

More Visualizations. Fig. 7 visualizes the points selected for densification in four scenes. It can be observed that our method
selects fewer points by concentrating on regions with blurry under-reconstructed areas. In contrast, the original adaptive
density control performs more densifications on high-frequency details, which is less likely to effectively enhance rendering
quality. These findings validate that our method conserves computational resources by directing densification toward areas that
result in the steepest descent in rendering loss.

More Metrics and Compared Methods. In addition to the compared methods in the main text, we test two more baselines:
Compact-3DGS [16] and LP-3DGS [45]. We also include elapsed time on GPU for training, mean and peak GPU memory
usage for training, and rendering FPS4 as additional metrics. Table 7 presents the comparison results evaluated on MipNeRF360,
Temple&Tanks, and Deep Blending datasets. Although Compact-3DGS and LP-3DGS yield fewer points in the final results,
our method achieves better metrics in PSNR and significantly reduces training time on GPUs. Moreover, our method
consistently decreases GPU memory usage and improves rendering FPS compared to the original 3DGS ADC, performing on
par with the two newly compared methods.

Improved Performance. Readers might feel curious if our method could achieve even more closer performance to that
of the original 3DGS ADC. In our main experiments, to ensure fair comparisons, we reuse the hyper-parameters of ADC.
However, we found that extending the densification iterations to 25K and the total training steps to 40K on some MipNeRF360
scenes allows our method to achieve better performance and further mitigates the blurriness observed in the rendered images.
As a reference, Table 6 demonstrates performance improvements with more densification iterations. Figure 6 shows reduced
blurriness in the stump scene.

4We observed that measuring FPS can be inconsistent, and the values reported in the table should be considered as a reference.

Ours 3DGS w/ ADC

11,917 pts. 56,525 pts.

7,706 pts. 26,079 pts.

9,860 pts.2,932 pts.

7,824 pts. 26,223 pts.

Figure 7. More visualizations of splitting points. We compare the number of points split by our proposed method and the original ADC.

C. Theory

C.1. Notations and Setup

To begin with, we re-introduce our notations and the problem setup more rigorously. We abstract each Gaussian as a
function �⇧(x;✓

(i)) : ⇥⇥ X ! O where ✓(i)
2 ⇥ are parameters encapsulating mean, covariance, density, SH coefficients,

(⇧,x) 2 X denote the camera transformations and the 2D-pixel coordinates respectively, and output includes density and
RGB color in space O. Further on, we assign the input space a probability measure D(X). We combine ↵-blending and the
photometric loss as a single function `(·) : P(O) 7! R, where P(O) denotes the entire output space, i.e., all multisets whose
elements are in the output space O. Suppose the scene has n Gaussians, then we denote the all parameters as ✓ = {✓(i)

}
n
i=1

for shorthand and the total loss function can be expressed as:

L(✓) = E⇧,x⇠D(X)[`(�⇧(x;✓
(1)), · · · ,�⇧(x;✓

(n)))]. (9)

Now our goal is to split each Gaussian into mi off-springs. We denote the parameters of the i-th Gaussian’s off-springs as
#(i) = {#(i)

j }
mi
j=1, where #(i)

j is the j-th off-spring of the i-th Gaussian and assign it a group of reweighting coefficients
w(i) = {w(i)

j }
mi
j=1 to over-parameterize the original Gaussian as:

Pmi

j=1 w
(i)
j �⇧(x;#

(i)
j) such that

Pmi

j=1 w
(i)
j = 1 for every

i 2 [n] We collect parameters of all the new Gaussians as # = {#(i)
}
n
i=1, and reweighting coefficients as w = {w(i)

}
n
i=1, for

MipNeRF360

Points # PSNR " SSIM " LPIPS # GPU elapse # mean GPU mem. # peak GPU mem. # FPS "

3DGS 3.339 M 29.037 0.872 0.183 1550.925 s 10.262 GB 12.110 GB 179

LP-3DGS 1.303 M 28.640 0.865 0.198 1177.648 s 10.027 GB 12.458 GB 350

Compact-3DGS 1.310 M 28.504 0.856 0.208 4063.203 s 7.274 GB 9.044 GB 98

SteepGS (Ours) 1.606 M 28.734 0.857 0.211 1051.276 s 7.597 GB 8.957 GB 252

Tank & Temple

Points # PSNR " SSIM " LPIPS # GPU elapse # mean GPU mem. # peak GPU mem. # FPS "

3DGS 1.830 M 23.743 0.848 0.177 803.542 s 5.193 GB 6.241 GB 248

LP-3DGS 0.671 M 23.424 0.839 0.197 1021.806 s 5.045 GB 6.489 GB 150

Compact-3DGS 0.836 M 23.319 0.835 0.200 1255.748 s 3.802 GB 4.774 GB 357

SteepGS (Ours) 0.958 M 23.684 0.840 0.194 539.048 s 4.701 GB 5.607 GB 343

Deep Blending

Points # PSNR " SSIM " LPIPS # GPU elapse # mean GPU mem. # peak GPU mem. # FPS "

3DGS 2.818 M 29.690 0.904 0.244 1429.878 s 8.668 GB 10.218 GB 187

LP-3DGS 0.861 M 29.764 0.906 0.249 1697.793 s 8.354 GB 10.115 GB 134

Compact-3DGS 1.054 M 29.896 0.905 0.255 1861.897 s 6.332 GB 8.026 GB 312

SteepGS (Ours) 1.296 M 29.963 0.905 0.250 956.536 s 5.928 GB 9.506 GB 280

Table 7. Comparison with LP-3DGS [45] and Compact-3DGS [16] baselines on MipNeRF360, Tank & Temple, and Deep Blending datasets.
Additional metrics: GPU elapsed time for training, mean & peak GPU memory usage, and FPS are included.

shorthand. With newly added Gaussians, the augmented loss function becomes:

L(#,w) = E⇧,x⇠D(X)

2

4`

0

@
m1X

j=1

w(1)
j �⇧(x;#

(1)
j), · · · ,

mnX

j=1

w(n)
j �⇧(x;#

(n)
j)

1

A

3

5 . (10)

C.2. Main Results
Proof of Theorem 1. We define µ(i) as the average displacement on ✓(i): µ(i) = (

Pmi

j=1 w
(i)
j #(i)

j � ✓(i))/✏ and �(i)j =

(#(i)
j � ✓(i))/✏� µ(i) as offset additional to µ(i) for the j-th off-spring. It is obvious that:

miX

j=1

w(i)
j �(i)j =

miX

j=1

w(i)
j

#(i)
j � ✓(i)

✏
� µ(i)

!
=

1

✏

miX

j=1

w(i)
j #(i)

j �
1

✏

miX

j=1

w(i)
j ✓(i)

�

miX

j=1

w(i)
j µ(i)

=
1

✏

miX

j=1

w(i)
j #(i)

j �
1

✏
✓(i)
� µ(i) = 0. (11)

In addition, we let �(i)
j = µ(i) + �(i)j , and #(i)

j can be written as: #(i)
j = ✓(i) + ✏�(i)

j = ✓(i) + ✏(µ(i) + �(i)j). We define an
auxiliary function: L(✓(\i),#(i),w(i)) as:

L(✓(\i),#(i),w(i)) = E⇧,x⇠D(X)

2

4`

0

@�⇧(x;✓
(1)), · · · ,

miX

j=1

w(i)
j �⇧(x;#

(i)
j), · · · ,�⇧(x;✓

(n))

1

A

3

5 , (12)

which only splits the i-th Gaussian ✓(i) as #(i). By Lemma 6, we have that:

(L(#,w)� L(✓)) =
nX

i=1

⇣
L(✓(\i),#(i),w(i))� L(✓)

⌘
+

✏2

2

X

i,i02[n]
i 6=i0

µ(i)>@2
✓(i)✓(i0)L(✓)µ

(i0) +O(✏3). (13)

By Lemma 7, we have:

L(✓(\i),#(i),w(i))� L(✓) = ✏@✓(i)L(✓)>µ(i) +
✏2

2
µ(i)>@2

✓(i)✓(i)L(✓)µ
(i) (14)

+
✏2

2

miX

j=1

w(i)
j �(i)>j S(i)(✓)�(i)j +O(✏3). (15)

Let µ =
⇥
µ(1)

· · · µ(n)
⇤

concatenate the average displacement on all Gaussians. Combining Eq. 13 and Eq. 14, we can
conclude:

(L(#,w)� L(✓)) =
nX

i=1

2

4✏@✓(i)L(✓)>µ(i) +
✏2

2
µ(i)>@2

✓(i)✓(i)L(✓)µ
(i) +

✏2

2

miX

j=1

w(i)
j �(i)>j S(i)(✓)�(i)j

3

5

+
✏2

2

X

i,i02[n]
i 6=i0

µ(i)>@2
✓(i)✓(i0)L(✓)µ

(i0) +O(✏3)

= ✏
nX

i=1

@✓(i)L(✓)>µ(i) +
✏2

2

X

i,i02[n]

µ(i)>@2
✓(i)✓(i0)L(✓)µ

(i0)

+
✏2

2

miX

j=1

w(i)
j �(i)>j S(i)(✓)�(i)j +O(✏3)

= ✏r✓L(✓)
>µ+

✏2

2
µ>
r

2
L(✓)µ+

✏2

2

miX

j=1

w(i)
j �(i)>j S(i)(✓)�(i)j +O(✏3),

as desired.

Proof of Theorem 2. By standard variational characterization, we have the following lower bound:

�(i)(�(i),w(i);✓) :=
✏2

2

miX

j=1

w(i)
j �(i)>j S(i)(✓)�(i)j �

✏2

2

miX

j=1

w(i)
j �min(S

(i)(✓)) =
✏2

2
�min(S

(i)(✓)),

subject to k�(i)j k 1. The equality holds only if �(i)j equals to the smallest eigenvector of S(i)(✓).
Hence, there is no decrease on the loss if �min(S

(i)(✓)) � 0. Otherwise, we can simply choose mi = 2, w(i)
1 = w(i)

2 = 1/2,
�(i)1 = vmin(S

(i)(✓)), and �(i)2 = �vmin(S
(i)(✓)) to achieve this lower bound.

C.3. Auxiliary Results
Lemma 3. The following equalities hold for L(✓) for every i 2 [n]

@✓(i)L(✓) = E⇧,x⇠D(X)

h
@�(i)`

⇣
�⇧(x;✓

(1)), · · · ,�⇧(x;✓
(n))
⌘
r�⇧(x;✓

(i))
i
,

@2
✓(i)✓(i)L(✓) = T (i)(✓) + S(i)(✓),

@2
✓(i)✓(i0)L(✓) = E⇧,x⇠D(X)

h
@2
�(i)�(i0)`

⇣
�⇧(x;✓

(1)), · · · ,�⇧(x;✓
(n))
⌘
r�⇧(x;✓

(i))r�⇧(x;✓
(i0))>

i
, 8i0 2 [n], i0 6= i,

where T (i)(✓) = E⇧,x⇠D(X)

h
@2
�(i)�(i)`

⇣
�⇧(x;✓

(1)), · · · ,�⇧(x;✓
(n))
⌘
r�⇧(x;✓

(i))r�⇧(x;✓
(i))>

i
.

Proof. The gradient of L(✓) is proved via simple chain rule. And then

@2
✓(i)✓(i0)L(✓) = @✓(i0) [@✓(i)L(✓)]

= E⇧,x⇠D(X)

h
@2
�(i)�(i0)`

⇣
�⇧(x;✓

(1)), · · · ,�⇧(x;✓
(n))
⌘
r�⇧(x;✓

(i))r�⇧(x;✓
(i0))>

i

+ E⇧,x⇠D(X)

h
@�(i)`

⇣
�⇧(x;✓

(1)), · · · ,�⇧(x;✓
(n))
⌘
@✓(i0)r�⇧(x;✓

(i))
i
.

When i = i0, @✓(i0)r�⇧(x;✓
(i)) = r2�⇧(x;✓

(i)), henceforth:

@2
✓(i)✓(i)L(✓) = T (i)(✓) + S(i)(✓).

Otherwise, @✓(i0)r�⇧(x;✓
(i)) = 0, and thus:

@2
✓(i)✓(i0)L(✓) = E⇧,x⇠D(X)

h
@2
�(i)�(i0)`

⇣
�⇧(x;✓

(1)), · · · ,�⇧(x;✓
(n))
⌘
r�⇧(x;✓

(i))r�⇧(x;✓
(i0))>

i
,

all as desired.

Lemma 4. The following equalities hold for L(#,w) at ✏ = 0:

@
#(i)

j
L(#,w)

���
✏=0

= w(i)
j @✓(i)L(✓), 8i 2 [n], j 2 [mi], (16)

@2
#(i)

j #(i)
j

L(#,w)

����
✏=0

= w(i)
j S(i)(✓) + w(i)2

j T (i)(✓), 8i 2 [n], j 2 [mi], (17)

@2
#(i)

j #(i)

j0
L(#,w)

����
✏=0

= w(i)
j w(i)

j0 T
(i)(✓), 8i 2 [n], j, j0 2 [mi], j 6= j0, (18)

@2

#(i)
j ,#(i0)

j0
L(#,w)

����
✏=0

= w(i)
j w(i0)

j0 @2
✓(i)✓(i0)L(✓), 8i, i0 2 [n], i 6= i0, j 2 [mi], j

0
2 [mi0], (19)

where T (i)(✓) = E⇧,x⇠D(X)

h
@2
�(i)�(i)`

⇣
�⇧(x;✓

(1)), · · · ,�⇧(x;✓
(n))
⌘
r�⇧(x;✓

(i))r�⇧(x;✓
(i))>

i
is as defined in

Lemma 3.

Proof. Let e�⇧(x;#
(i)) =

Pmi

j=1 w
(i)
j �⇧(x;#

(i)
j) and we can express L(#,w) as:

L(#,w) = E⇧,x⇠D(X)

h
`
⇣
e�⇧(x;#

(1)), · · · , e�⇧(x;#
(n))
⌘i

. (20)

To take derivatives of L(#,w), we leverage the chain rule. For every i 2 [n], j 2 [mi]:

@
#(i)

j
L(#,w) = @

#(i)
j

E⇧,x⇠D(X)

h
`
⇣
e�⇧(x;#

(1)), · · · , e�⇧(x;#
(n))
⌘i

= E⇧,x⇠D(X)

h
@
#(i)

j
`
⇣
e�⇧(x;#

(1)), · · · , e�⇧(x;#
(n))
⌘i

= E⇧,x⇠D(X)

h
@�(i)`

⇣
e�⇧(x;#

(1)), · · · , e�⇧(x;#
(n))
⌘
@
#(i)

j
e�⇧(x;#

(i))
i

= w(i)
j E⇧,x⇠D(X)

h
@�(i)`

⇣
e�⇧(x;#

(1)), · · · , e�⇧(x;#
(n))
⌘
r�⇧(x;#

(i)
j)
i
. (21)

Since ✏ = 0, we have #(i)
j = ✓(i) and e�⇧(x;#

(i)) =
Pmi

j=1 w
(i)
j �⇧(x;✓

(i)) = �⇧(x;✓). Hence, we can further simplify Eq.
21 as:

@
#(i)

j
L(#,w)

���
✏=0

= w(i)
j E⇧,x⇠D(X)

h
@�(i)`

⇣
e�⇧(x;#

(1)), · · · , e�⇧(x;#
(n))
⌘
r�⇧(x;#

(i)
j)
i���

✏=0

= w(i)
j E⇧,x⇠D(X)

h
@�(i)`

⇣
�⇧(x;✓

(1)), · · · ,�⇧(x;✓
(n))
⌘
r�⇧(x;✓

(i))
i

= w(i)
j @✓(i)L(✓),

where the last step is due to Lemma 3.
Next we derive second-order derivatives. Taking derivatives of Eq. 21 in terms of #(i0)

j0 for some i0 2 [n], j0 2 [mi0], and by
chain rule:

@2

#(i)
j #(i0)

j0
L(#,w) = @

#(i0)
j0

w(i)
j E⇧,x⇠D(X)

h
@�(i)`

⇣
e�⇧(x;#

(1)), · · · , e�⇧(x;#
(n))
⌘
r�⇧(x;#

(i)
j)
i

= w(i)
j E⇧,x⇠D(X)

@2
�(i)�(i0)`

⇣
e�⇧(x;#

(1)), · · · , e�⇧(x;#
(n))
⌘
r�⇧(x;#

(i)
j)@

#(i0)
j0
e�⇧(x;#

(i0))>
�

+ w(i)
j E⇧,x⇠D(X)

@�(i)`

⇣
e�⇧(x;#

(1)), · · · , e�⇧(x;#
(n))
⌘
@
#(i0)

j0
r�⇧(x;#

(i)
j)

�

= w(i)
j w(i0)

j0 E⇧,x⇠D(X)

h
@2
�(i)�(i0)`

⇣
e�⇧(x;#

(1)), · · · , e�⇧(x;#
(n))
⌘
r�⇧(x;#

(i)
j)r�⇧(x;#

(i0)
j0)>

i

+ w(i)
j E⇧,x⇠D(X)

@�(i)`

⇣
e�⇧(x;#

(1)), · · · , e�⇧(x;#
(n))
⌘
@
#(i0)

j0
r�⇧(x;#

(i)
j)

�
.

Now we discuss three scenarios:
1. When i = i0 and j = j0, @

#(i0)
j0
r�⇧(x;#

(i)
j) = r2�⇧(x;#

(i)
j), and then

@2
#(i)

j #(i)
j

L(#,w) = w(i)2
j E⇧,x⇠D(X)

h
@2
�(i)�(i)`

⇣
e�⇧(x;#

(1)), · · · , e�⇧(x;#
(n))
⌘
r�⇧(x;#

(i)
j)r�⇧(x;#

(i)
j)>

i

+ w(i)
j E⇧,x⇠D(X)

h
@�(i)`

⇣
e�⇧(x;#

(1)), · · · , e�⇧(x;#
(n))
⌘
r

2�⇧(x;#
(i)
j)
i

(22)

2. When i = i0 and j 6= j0, @
#(i0)

j0
r�⇧(x;#

(i)
j) = 0, and thus

@2
#(i)

j #(i)

j0
L(#,w) = w(i)

j w(i)
j0 E⇧,x⇠D(X)

h
@2
�(i)�(i)`

⇣
e�⇧(x;#

(1)), · · · , e�⇧(x;#
(n))
⌘
r�⇧(x;#

(i)
j)r�⇧(x;#

(i)
j0)

>
i

(23)

3. When i 6= i0, @
#(i0)

j0
r�⇧(x;#

(i)
j) = 0, and henceforth

@2

#(i)
j #(i0)

j0
L(#,w) = w(i)

j w(i0)
j0 E⇧,x⇠D(X)

h
@2
�(i)�(i0)`

⇣
e�⇧(x;#

(1)), · · · , e�⇧(x;#
(n))
⌘
r�⇧(x;#

(i)
j)r�⇧(x;#

(i0)
j0)>

i

(24)

Using this fact again: #(i)
j = ✓(i) and e�⇧(x;#

(i)) =
Pmi

j=1 w
(i)
j �⇧(x;✓

(i)) = �⇧(x;✓
(i)) when ✏ = 0, Eq. 22 becomes:

@2
#(i)

j #(i)
j

L(#,w)

����
✏=0

= w(i)2
j E⇧,x⇠D(X)

h
@2
�(i)�(i)`

⇣
�⇧(x;✓

(1)), · · · ,�⇧(x;✓
(n))
⌘
r�⇧(x;✓

(i))r�⇧(x;✓
(i))>

i

+ w(i)
j E⇧,x⇠D(X)

h
@�(i)`

⇣
�⇧(x;✓

(1)), · · · ,�⇧(x;✓
(n))
⌘
r

2�⇧(x;✓
(i))
i

= w(i)2
j T (i)(✓) + w(i)

j S(i)(✓),

Eq. 23 can be simplified as:

@2
#(i)

j #(i)

j0
L(#,w)

����
✏=0

= w(i)
j w(i)

j0 E⇧,x⇠D(X)

h
@2
�(i)�(i)`

⇣
�⇧(x;✓

(1)), · · · ,�⇧(x;✓
(n))
⌘
r�⇧(x;✓

(i))r�⇧(x;✓
(i))>

i

= w(i)
j w(i)

j0 T
(i)(✓),

and by Lemma 3, Eq. 24 turns into:

@2

#(i)
j #(i0)

j0
L(#,w)

����
✏=0

= w(i)
j w(i0)

j0 E⇧,x⇠D(X)

h
@2
�(i)�(i0)`

⇣
�⇧(x;✓

(1)), · · · ,�⇧(x;✓
(n))
⌘
r�⇧(x;✓

(i))r�⇧(x;✓
(i0))>

i

= w(i)
j w(i0)

j0 @2

#(i)
j #(i0)

j0
L(✓),

all as desired.

Lemma 5. The following equalities hold for L(✓(\i),#(i),w(i)) at ✏ = 0 for any i 2 [n]:

@
#(i)

j
L(✓(\i),#(i),w(i))

���
✏=0

= w(i)
j @✓(i)L(✓), 8j 2 [mi], (25)

@2
#(i)

j #(i)
j

L(✓(\i),#(i),w(i))

����
✏=0

= w(i)
j S(i)(✓) + w(i)2

j T (i)(✓), 8j 2 [mi], (26)

@2
#(i)

j #(i)

j0
L(✓(\i),#(i),w(i))

����
✏=0

= w(i)
j w(i)

j0 T
(i)(✓), 8j, j0 2 [mi], j 6= j0, (27)

where T (i)(✓) = E⇧,x⇠D(X)

h
@2
�(i)�(i)`

⇣
�⇧(x;✓

(1)), · · · ,�⇧(x;✓
(n))
⌘
r�⇧(x;✓

(i))r�⇧(x;✓
(i))>

i
is as defined in

Lemma 3.

Proof. The proof is identical to Lemma 4. We outline the details for completeness. Let e�⇧(x;#
(i)) =

Pmi

j=1 w
(i)
j �⇧(x;#

(i)
j)

and we can express L(✓(\i),#(i),w(i)) as:

L(✓(\i),#(i),w(i)) = E⇧,x⇠D(X)

h
`
⇣
�⇧(x;✓

(1)), · · · , e�⇧(x;#
(i)), · · · ,�⇧(x;✓

(n))
⌘i

. (28)

By chain rule, for every j 2 [mi]:

@
#(i)

j
L(✓(\i),#(i),w(i)) = @

#(i)
j

E⇧,x⇠D(X)

h
`
⇣
�⇧(x;✓

(1)), · · · , e�⇧(x;#
(i)), · · · ,�⇧(x;✓

(n))
⌘i

= E⇧,x⇠D(X)

h
@�(i)`

⇣
�⇧(x;✓

(1)), · · · , e�⇧(x;#
(i)), · · · ,�⇧(x;✓

(n))
⌘
@
#(i)

j
e�⇧(x;#

(i))
i

= w(i)
j E⇧,x⇠D(X)

h
@�(i)`

⇣
�⇧(x;✓

(1)), · · · , e�⇧(x;#
(i)), · · · ,�⇧(x;✓

(n))
⌘
r�⇧(x;#

(i)
j)
i
. (29)

Using the fact that #(i)
j = ✓(i) and e�⇧(x;#

(i)) =
Pmi

j=1 w
(i)
j �⇧(x;✓

(i)) = �⇧(x;✓
(i)) when ✏ = 0, Eq. 29 can be rewritten

as:

@
#(i)

j
L(✓(\i),#(i),w(i))

���
✏=0

= w(i)
j E⇧,x⇠D(X)

h
@�(i)`

⇣
�⇧(x;✓

(1)), · · · , e�⇧(x;#
(i)), · · · ,�⇧(x;✓

(n))
⌘
r�⇧(x;#

(i)
j)
i���

✏=0

= w(i)
j E⇧,x⇠D(X)

h
@�(i)`

⇣
�⇧(x;✓

(1)), · · · ,�⇧(x;✓
(i)), · · · ,�⇧(x;✓

(n))
⌘
r�⇧(x;✓

(i))
i

= w(i)
j @✓(i)L(✓),

where the last step is due to Lemma 3.
Next we derive second-order derivatives. Taking derivatives of Eq. 29 in terms of #(i)

j0 for some j0 2 [mi], and by chain
rule:

@2
#(i)

j #(i)

j0
L(✓(\i),#(i),w(i)) = @

#(i)

j0
w(i)

j E⇧,x⇠D(X)

h
@�(i)`

⇣
· · · , e�⇧(x;#

(i)), · · ·
⌘
r�⇧(x;#

(i)
j)
i

= w(i)
j E⇧,x⇠D(X)

@2
�(i)�(i)`

⇣
· · · , e�⇧(x;#

(i)), · · ·
⌘
r�⇧(x;#

(i)
j)@

#(i)

j0
e�⇧(x;#

(i0))>
�

+ w(i)
j E⇧,x⇠D(X)

@�(i)`

⇣
· · · , e�⇧(x;#

(i)), · · ·
⌘
@
#(i)

j0
r�⇧(x;#

(i)
j)

�

= w(i)
j w(i)

j0 E⇧,x⇠D(X)

h
@2
�(i)�(i)`

⇣
· · · , e�⇧(x;#

(i)), · · ·
⌘
r�⇧(x;#

(i)
j)r�⇧(x;#

(i)
j0)

>
i

+ w(i)
j E⇧,x⇠D(X)

@�(i)`

⇣
· · · , e�⇧(x;#

(i)), · · ·
⌘
@
#(i)

j0
r�⇧(x;#

(i)
j)

�
.

Now we consider two scenarios:
1. When j = j0, @

#(i)

j0
r�⇧(x;#

(i)
j) = r2�⇧(x;#

(i)
j), and then

@2
#(i)

j #(i)
j

L(✓(\i),#(i),w(i))

����
✏=0

= w(i)2
j E⇧,x⇠D(X)

h
@2
�(i)�(i)`

⇣
· · · , e�⇧(x;#

(i)), · · ·
⌘
r�⇧(x;#

(i)
j)r�⇧(x;#

(i)
j)>

i

+ w(i)
j E⇧,x⇠D(X)

h
@�(i)`

⇣
· · · , e�⇧(x;#

(i)), · · ·
⌘
r

2�⇧(x;#
(i)
j)
i

(30)

2. When j 6= j0, @
#(i)

j0
r�⇧(x;#

(i)
j) = 0, and thus

@2
#(i)

j #(i)

j0
L(✓(\i),#(i),w(i))

����
✏=0

= w(i)
j w(i)

j0 E⇧,x⇠D(X)

h
@2
�(i)�(i)`

⇣
· · · , e�⇧(x;#

(i)), · · ·
⌘
r�⇧(x;#

(i)
j)r�⇧(x;#

(i)
j0)

>
i

(31)

Using this fact again: #(i)
j = ✓(i) and e�⇧(x;#

(i)) =
Pmi

j=1 w
(i)
j �⇧(x;✓

(i)) = �⇧(x;✓
(i)) when ✏ = 0, Eq. 30 becomes:

@2
#(i)

j #(i)
j

L(✓(\i),#(i),w(i)) = w(i)2
j E⇧,x⇠D(X)

h
@2
�(i)�(i)`

⇣
· · · ,�⇧(x;✓

(i)), · · ·
⌘
r�⇧(x;✓

(i))r�⇧(x;✓
(i))>

i

+ w(i)
j E⇧,x⇠D(X)

h
@�(i)`

⇣
· · · ,�⇧(x;✓

(i)), · · ·
⌘
r

2�⇧(x;✓
(i))
i

= w(i)2
j T (i)(✓) + w(i)

j S(i)(✓),

and Eq. 31 can be simplified as:

@2
#(i)

j #(i)

j0
L(✓(\i),#(i),w(i)) = w(i)

j w(i)
j0 E⇧,x⇠D(X)

h
@2
�(i)�(i)`

⇣
· · · ,�⇧(x;✓

(i)), · · ·
⌘
r�⇧(x;✓

(i))r�⇧(x;✓
(i))>

i

= w(i)
j w(i)

j0 T
(i)(✓),

both as desired.

Lemma 6. Assume L(#,w) has bounded third-order derivatives with respect to #, then we have

(L(#,w)� L(✓)) =
nX

i=1

⇣
L(✓(\i),#(i),w(i))� L(✓)

⌘
+

✏2

2

X

i,i02[n]
i 6=i0

µ(i)>@2
✓(i)✓(i0)L(✓)µ

(i0) +O(✏3),

where L(✓(\i),#(i),w(i)) and µ(i) are as defined in Theorem 1.

Proof. Define an auxiliary function:

F (✏) = (L(#,w)� L(✓))�
nX

i=1

⇣
L(✓(\i),#(i),w(i))� L(✓)

⌘
.

Note that F (✏) also has bounded third-order derivatives. Hence, by Taylor expansion:

F (✏) = F (0) + ✏
d

d✏
F (0) +

✏2

2

d2

d✏2
F (0) +O(✏3). (32)

Compute the first-order derivatives of F via path derivatives, we can derive

d

d✏
(L(#,w)� L(✓)) =

nX

i=1

miX

j=1

@
#(i)

j
L(#,w)>

d#(i)
j

d✏
=

nX

i=1

miX

j=1

@
#(i)

j
L(#,w)>�(i)

j , (33)

and for every i 2 [n]:

d

d✏

⇣
L(✓(\i),#(i),w(i))� L(✓)

⌘
=

miX

j=1

@
#(i)

j
L(✓(\i),#(i),w(i))>

d#(i)
j

d✏

=
miX

j=1

@
#(i)

j
L(✓(\i),#(i),w(i))>�(i)

j , (34)

By Lemma 4 and Lemma 5, @
#(i)

j
L(✓(\i),#(i),w(i))

���
✏=0

= @
#(i)

j
L(#,w)

���
✏=0

, hence combining Eq. 33 and 34:

d

d✏
F (0) =

2

4
nX

i=1

miX

j=1

@
#(i)

j
L(#,w)>�(i)

j �

nX

i=1

miX

j=1

@
#(i)

j
L(✓(\i),#(i),w(i))>�(i)

j

3

5

������
✏=0

= 0. (35)

We can also compute the second-order derivatives via path derivatives:

d2

d✏2
(L(#,w)� L(✓)) =

d

d✏

nX

i=1

miX

j=1

@
#(i)

j
L(#,w)>�(i)

j

=
nX

i=1

nX

i0=1

miX

j=1

mi0X

j0=1

�(i)>
j @2

#(i)
j #(i0)

j0
L(#,w)

d#(i0)
j0

d✏

=
nX

i=1

nX

i0=1

miX

j=1

mi0X

j0=1

�(i)>
j @2

#(i)
j #(i0)

j0
L(#,w)�(i0)

j0 , (36)

and similarly for every i 2 [n],

d2

d✏2

⇣
L(✓(\i),#(i),w(i))� L(✓)

⌘
=

d

d✏

miX

j=1

@
#(i)

j
L(✓(\i),#(i),w(i))>�(i)

j

=
miX

j=1

miX

j0=1

�(i)>
j @2

#(i)
j #(i)

j0
L(✓(\i),#(i),w(i))

d#(i)
j0

d✏

=
miX

j=1

miX

j0=1

�(i)>

j @2
#(i)

j #(i)

j0
L(✓(\i),#(i),w(i))�(i)

j0 . (37)

By Lemma 4 and Lemma 5, @2
#(i)

j #(i)

j0
L(✓(\i),#(i),w(i))

����
✏=0

= @2
#(i)

j #(i)

j0
L(#,w)

����
✏=0

for any i 2 [n] and j, j0 2 [mi], hence

we can cancel all terms in Eq. 37 by:

d2

d✏2
F (0) =

2

4
X

i,i02[n]

miX

j=1

mi0X

j0=1

�(i)>
j @2

#(i)
j #(i0)

j0
L(#,w)�(i0)

j0 �

nX

i=1

miX

j=1

miX

j0=1

�(i)>

j @2
#(i)

j #(i)

j0
L(✓(\i),#(i),w(i))�(i)

j0

3

5

������
✏=0

=

2

4
nX

i=1

miX

j=1

mi0X

j0=1

�(i)>
j

✓
@2
#(i)

j #(i)

j0
L(#,w)� @2

#(i)
j #(i)

j0
L(✓(\i),#(i),w(i))

◆
�(i)

j0

3

5

������
✏=0

+

2

4
X

i 6=i0

miX

j=1

mi0X

j0=1

�(i)>
j @2

#(i)
j #(i0)

j0
L(#,w)�(i0)

j0

3

5

������
✏=0

=
X

i 6=i0

miX

j=1

mi0X

j0=1

w(i)
j w(i0)

j0 �(i)>
j @2

#(i)
j #(i0)

j0
L(✓)�(i0)

j0

=
X

i 6=i0

miX

j=1

mi0X

j0=1

µ(i)>@2

#(i)
j #(i0)

j0
L(✓)µ(i0), (38)

where we use Eq. 19 in Lemma 4 for the last second equality, and we use the fact:
Pmi

j=1 w
(i)
j �(i)

j = µ(i) to get the last
equality. Merging Eq. 32, 35, 38, we obtain the result as desired.

Lemma 7. Assume L(#,w) has bounded third-order derivatives with respect to #, then we have

L(✓(\i),#(i),w(i))� L(✓) = ✏@✓(i)L(✓)>µ(i) +
✏2

2
µ(i)>@2

✓(i)✓(i)L(✓)µ
(i)

+
✏2

2

miX

j=1

w(i)
j �(i)>j S(i)(✓)�(i)j +O(✏3).

Proof. Let ✓
(i)

= {✓(i), · · · ,✓(i)
} such that |✓

(i)
| = mi. This is we split the i-th Gaussian into mi off-springs with parameters

identical to the original one, or namely we let ✏ = 0. If we replace #(i) with ✓
(i)

, it holds that:

L(✓(\i),✓
(i)
,w(i)) = E⇧,x⇠D(X)

2

4`

0

@�⇧(x;✓
(1)), · · · ,

miX

j=1

w(i)
j �⇧(x;✓

(i)), · · · ,�⇧(x;✓
(n))

1

A

3

5

= E⇧,x⇠D(X)

h
`
⇣
�⇧(x;✓

(1)), · · · ,�⇧(x;✓
(i)), · · · ,�⇧(x;✓

(n))
⌘i

= L(✓),

and

@
#(i)

j
L(✓(\i),✓

(i)
,w(i)) = @

#(i)
j

L(✓(\i),#(i),w(i))
���
✏=0

.

By Taylor expansion,

L(✓(\i),#(i),w(i))� L(✓) = L(✓(\i),#(i),w(i))� L(✓(\i),✓
(i)
,w(i))

=
miX

j=1

L(✓(\i),#(i),w(i))
���
>

✏=0
(#(i)

j � ✓(i))

+
X

j,j02[mi]

(#(i)
j � ✓(i))> @

#(i)
j #(i)

j0
L(✓(\i),#(i),w(i))

����
✏=0

(#(i)
j0 � ✓(i)) +O(✏3).

By Lemma 5 and 3:

L(✓(\i),#(i),w(i))� L(✓)

= ✏
miX

j=1

w(i)
j @✓(i)L(✓)>�

(i)
j +

✏2

2

miX

j=1

�(i)>
j

⇣
w(i)

j S(i)(✓) + w(i)2

j T (i)(✓)
⌘
�(i)

j

+
✏2

2

X

j,j02[mi],j 6=j0

w(i)
j w(i)

j0 �
(i)>
j T (i)(✓)�(i)

j0 +O(✏3)

= ✏
miX

j=1

w(i)
j @✓(i)L(✓)>�

(i)
j +

✏2

2

miX

j=1

w(i)
j �(i)>

j S(i)(✓)�(i)
j

+
✏2

2

X

j,j02[mi]

w(i)
j w(i)

j0 �
(i)>
j T (i)(✓)�(i)

j +O(✏3)

= ✏@✓(i)L(✓)>µ(i) +
✏2

2

miX

j=1

w(i)
j �(i)>

j S(i)(✓)�(i)
j + µ(i)>T (i)(✓)µ(i) +O(✏3)

= ✏@✓(i)L(✓)>µ(i) +
✏2

2
µ(i)>

⇣
S(i)(✓) + T (i)(✓)

⌘
µ(i)

+
✏2

2

miX

j=1

w(i)
j

⇣
�(i)>

j S(i)(✓)�(i)
j � µ(i)>S(i)(✓)µ(i)

⌘
+O(✏3)

= ✏@✓(i)L(✓)>µ(i) +
✏2

2
µ(i)>@2

✓(i)✓(i)L(✓)µ
(i) +

✏2

2

miX

j=1

w(i)
j

⇣
�(i)>

j S(i)(✓)�(i)
j � µ(i)>S(i)(✓)µ(i)

⌘
+O(✏3).

Finally, we conclude the proof by showing that:

miX

j=1

w(i)
j

⇣
�(i)>

j S(i)(✓)�(i)
j � µ(i)>S(i)(✓)µ(i)

⌘

=
miX

j=1

w(i)
j �(i)>

j S(i)(✓)�(i)
j + µ(i)>S(i)(✓)µ(i)

� 2

0

@
miX

j=1

w(i)
j �(i)

j

1

A
>

S(i)(✓)µ(i)

=
miX

j=1

w(i)
j

⇣
(�(i)

j � µ(i))>S(i)(✓)(�(i)
j � µ(i))

⌘
=

miX

j=1

w(i)
j �(i)

>

j S(i)(✓)�(i)j .

C.4. Deriving Hessian of Gaussian
In Sec. 4.4, we discussed that SteepGS requires the computation of Hessian matrices for �⇧(x;✓). We make the following
simplifications: (i) We only consider position parameters as the optimization variable when computing the steepest descent
directions. (ii) Although other variables may have a dependency on the mean parameters, e.g. the projection matrix and
view-dependent RGB colors, we break this dependency for ease of derivation. Now suppose we have a 3D Gaussian point
with parameters ✓ = (p,⌃, o), where we omit RGB colors as it can be handled similarly to opacity o. Given the affine
transformation ⇧ : p 7! Pp+ b with P 2 R2⇥3 and b 2 R2, then �⇧(x;✓) can be expressed as:

�⇧(x;✓) = o exp

✓
�
1

2
(x� Pp� b)>(P⌃P>)�1(x� Pp� b)

◆
= oN (x;Pp+ b,P⌃P>).

Its gradient can be derived as:

rp�⇧(x;✓) = oN (x;Pp+ b,P⌃P>)rp

�
1

2
(x� Pp� b)>(P⌃P>)�1(x� Pp� b)

�

= oN (x;Pp+ b,P⌃P>)P>(P⌃P>)�1(x� Pp� b).

Now we can compute the Hessian matrix as:

r
2
p�⇧(x;✓) = P>(P⌃P>)�1(x� Pp+ b)rp

h
oN (x;Pp+ b,P⌃P>)

i>
� oN (x;Pp+ b,P⌃P>)(P⌃P>)�1P

= oN (x;Pp+ b,P⌃P>)P>(P⌃P>)�1(x� Pp� b)(x� Pp� b)>(P⌃P>)�1P

� oN (x;Pp+ b,P⌃P>)P>(P⌃P>)�1P

= �⇧(x;✓)
⇣
P>(P⌃P>)�1(x� Pp� b)(x� Pp� b)>(P⌃P>)�1P � P>(P⌃P>)�1P

⌘

as desired.

