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Supplementary Material

A. Analysis and discussion
A.1. Sinkhorn divergence algorithm
The optimal transport (OT) problem is formally defined as
follows:

D(p, q|C) = min
γ∈Rn×m

⟨γ,C⟩

= min
γ∈Rn×m

n∑
i=1

m∑
j=1

γijc(fxi , fyj ),

subject to
m∑
j=1

γij = pi ∀i ∈ {1, . . . , n},

n∑
i=1

γij = qj ∀j ∈ {1, . . . ,m},

(1)

where c(fxi , fyj ) represents the cost of transporting a unit of
mass from feature fxi to fyj , and ⟨γ,C⟩ denotes the Frobenius
inner product of γ and the cost matrix C.

Solving this optimization problem directly can be com-
putationally prohibitive, especially in high-dimensional fea-
ture spaces. To mitigate this issue, we incorporate entropic
regularization, which leads to the Sinkhorn distance and
smooths the optimization landscape. The regularized OT
problem is formulated as:

Dϵ(p,q|C) = min
γ∈Rn×m

⟨γ,C⟩ − ϵh(γ),

subject to γ1m = p, γ⊤1n = q,
γ ∈ Rn×m

+ ,

(2)

where h(γ) = −
∑

i,j γij log γij is the entropy of γ, and
1m, 1n are all-ones vectors. The Sinkhorn distance al-
lows for more efficient optimization through the iterative
Sinkhorn-Knopp algorithm, where the optimal transport
plan γ is updated iteratively as:

γ(t) = diag(u(t))Kdiag(v(t)), (3)

where K = exp(−C/ϵ) and u and v are updated as:

u(t+1) = p ⊘ (Kv(t)),

v(t+1) = q ⊘ (K⊤u(t+1)),
(4)

with ⊘ denoting element-wise division and the initial con-
dition v(0) = 1.

A.2. Detailed architecture design
To ensure compatibility with the Transformer architecture
in our approach, the quantized sub-vectors {ŵq

i }mi=1 ⊂
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Figure 1. Modifications to the positional embedding of CLIP’s text
encoder.

Rm×s×(dw/s) are processed through a learnable MLP layer,
which adjusts them to match the embedding dimension of
the input tokens. These transformed variables are then in-
put into a Transformer model, utilizing the CLIP [11] text
encoder. In the original CLIP model, absolute positional
embeddings are added to the token embeddings to encode
positional information within the sequence. As depicted in
Fig. 1, to align the pre-trained positional embeddings with
the size of our transformed variables, We modify the con-
text length in the CLIP model to correspond to the number
of quantized sub-vectors, denoted by s, and interpolate the
pre-trained positional embeddings to match this new length.
This adjustment also necessitates corresponding changes in
the attention mask within the Transformer, ensuring proper
functionality.

A.3. Usage of codebook
Our primary objective in this work is to learn a compact and
thoroughly explored latent space. To achieve this, we aim to
maximize the activation of codes within the codebook. The
utilization rate of the codebook is defined as the proportion
of active codes. Our results (Table 4 in primary text) show
that smaller code dimensions are more effectively utilized,
likely due to the simplicity and decoupling of the informa-
tion they encode. Furthermore, our codebook initialization
method significantly enhances the utilization rate, indicat-
ing that embedded prior knowledge facilitates better use of
the codebook information.

A.4. Embedding space
We evaluate the diversity within the discriminator’s embed-
ding space by analyzing the similarity between extracted
features. Feature vectors are drawn from the discriminator’s
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Figure 2. Evolutions of the cosine similarity for the discriminator’s
embedding space and CLIP’s embedding space.

penultimate layer, and cosine similarity is computed across
all pairs of feature vectors in the dataset. By tracking the av-
erage cosine similarity throughout training, we gain insights
into the evolution of the embedding space. Fig. 2a illus-
trates the cosine similarity’s progression in the discrimina-
tor’s embedding space. Compared to the baseline method,
our approach demonstrates a lower average cosine similar-
ity, indicating a more diverse and discriminative embedding
space.

Additionally, we evaluate the similarity between the
CLIP model’s features on the generated images, as shown in
Fig. 2b. The results reveal that our method achieves a lower
average cosine similarity, indicating greater diversity in the
generated images, aligning with our approach’s objectives.

B. Experimental settings
B.1. Datasets
Our experiments are conducted using four distinct datasets:
Oxford-Dog (derived from the Oxford-IIIT Pet Dataset [9]),
Flickr-Faces-HQ (FFHQ) [4], MetFaces [5], and BreCa-
HAD [1]. Detailed descriptions of each dataset are provided
below:

B.1.1. OxfordDog
We utilize dog images from the Oxford-IIIT Pet Dataset [9].
A dog face detection model is employed to crop and stan-
dardize these images to a uniform resolution of 256 × 256
pixels, ensuring the dog’s face is centered as accurately as
possible. A total of 4,492 images are randomly selected
for training, while the remaining 498 images constitute the
test set. This dataset includes approximately 25 dog breeds,
presenting a challenging variety of poses and backgrounds,
thereby offering a diverse set of conditions for our experi-
ments.

B.1.2. FFHQ
The Flickr-Faces-HQ (FFHQ) dataset [4] comprises 70,000
high-resolution images of human faces, representing a
broad spectrum of ages, ethnicities, and backgrounds.
These images, sourced from Flickr, have been meticulously

aligned and cropped to ensure high consistency and quality
across the dataset. The dataset also includes various ac-
cessories such as eyeglasses and hats, further enhancing its
diversity.

B.1.3. MetFaces
The MetFaces dataset [5] contains 1,336 high-resolution
images of faces from the Metropolitan Museum of Art’s
collection1. These images are used primarily for research
and analysis in facial representations across different artistic
styles, making this dataset a unique resource for evaluating
generative models.

B.1.4. BreCaHAD
The BreCaHAD dataset [1] is specifically designed for
breast cancer histopathology research. It contains 162 high-
resolution images (1360 × 1024 pixels) of histopathology
slides. For our experiments, these images are restructured
into 1,944 partially overlapping crops, each with a resolu-
tion of 512× 512 pixels.

B.1.5. FFHQ-2.5k
We apply a pre-trained BLIP-base model [7] to the original
70,000 images from the FFHQ dataset to extract features.
These features are then aggregated to facilitate the appli-
cation of the K-means clustering algorithm. To simulate
a low-data scenario, we set the number of cluster centers
to K=14, resulting in an average of 5,000 images per clus-
ter. We present the distribution of these clusters (Fig. 3)
and visualize the features using t-SNE (Fig. 4). From these
clusters, we select the smallest, comprising 2,500 images
(referred to as FFHQ-2.5K), for further experimentation.
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Figure 3. Clustering results for the FFHQ dataset.

B.2. Evaluation metrics
To evaluate the efficacy of our proposed method and bench-
mark it against existing baselines, we employ three widely
recognized metrics: Inception Score (IS) [12], Fréchet In-
ception Distance (FID) [3], and Kernel Inception Distance

1https://metmuseum.github.io/
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Figure 4. t-SNE visualization of features from the FFHQ dataset.

(KID) [2]. These metrics provide a comprehensive assess-
ment of the quality, diversity, and distribution alignment of
the generated images, enabling a thorough comparison of
the models’ performance. The following sections provide a
detailed overview of each metric:

B.2.1. Inception Score (IS)
The IS metric [12] evaluates both the quality and diversity
of the generated images. It is a widely recognized measure
in the early stages of GAN development, which evaluates
the generated images by analyzing the conditional entropy
of class labels predicted by an Inception network, with a
higher score indicating better performance.

B.2.2. Fréchet Inception Distance (FID)
The FID metric [3] is extensively used to measure the sim-
ilarity between the distributions of generated and real im-
ages. It computes the Fréchet distance—also known as the
Wasserstein-2 distance, between Gaussian distributions fit-
ted to the hidden activations of an Inception network for
both the generated and ground-truth images. FID is sen-
sitive to both the quality and diversity of the images, with
a lower score reflecting superior performance. It is con-
sidered a more comprehensive and reliable indicator than
IS, particularly in capturing discrepancies in higher-order
statistics.

B.2.3. Kernel Inception Distance (KID)
The KID metric [2] is similar to FID but offers distinct ad-
vantages. It measures the squared maximum mean discrep-
ancy (MMD) between Inception representations of the gen-
erated and real images. Unlike FID, KID does not assume
a parametric form for the activation distribution, and it pro-
vides a simple, unbiased estimator. This makes KID espe-
cially informative when the available ground-truth data is
limited in scale. A lower KID score indicates better align-

ment between the generated and real data distributions, sig-
naling higher image quality and consistency.

B.3. Implementation details
We utilized the implementations from [8] and [6] to train
SNGAN and StyleGAN2, respectively. Additionally, we
implemented a 64 × 64 version of DCGAN based on the
approach outlined in [10]. All experiments were conducted
using consistent hyperparameter settings across models,
and performance was evaluated using the evaluation frame-
work provided by [6]. During training, we adjusted the set-
tings for λsq and λqcr to 0.01 each, reflecting the additional
constraint terms introduced by StyleGAN2. It is worth not-
ing that our results exhibited some discrepancies when com-
pared to the scores reported in the literature, which may be
attributed to variations in hardware or differences across ex-
perimental runs.

C. Additional Results

The superior performance of our method is further vali-
dated by the qualitative results presented in Figs. 5, 6, 7
and 8, which showcase the high-quality images generated
by our approach. For consistency, identical hyperparame-
ters and the same random seed were maintained across all
experiments. The images presented were randomly selected
from the generated outputs, with no specific selection crite-
ria other than a global random seed. “Best FID” refers to
images generated at the step with the best FID score. Our
results indicate that our method produces more realistic im-
ages compared to baseline models.
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Figure 5. Quantitative results on the OxfordDog dataset (best FID).



StyleGAN2 LeCAM CR DigGAN KD-DLGAN Ours

Figure 6. Quantitative results on the FFHQ-2.5k dataset (best FID).
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Figure 7. Quantitative results on the MetFaces dataset (best FID).
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Figure 8. Quantitative results on the BreCaHAD dataset (best FID).
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