
In this appendix, we provide additional details on the
methods and experiments discussed in Section 7 and Sec-
tion 8. Explanations related to the dataset will be included
in Section 9. We will also expand on the user study and
present additional case studies in Sections 10 and 11. Fi-
nally, necessary explanations on multi-media material will
be provided in Section 12. Limitations are discussed in Sec-
tion 13.

7. Method Details
7.1. Motivation of Decomposing
Current V2As [24, 54] struggle with control accuracy due to
incomplete visual cues in their control signals. Simply pre-
dicting mel (in low-resolution) from video increases com-
plexity, and reduces performance in controlling audio gen-
erator (Table 3, row 1). To cope with this issue, we decom-
pose mel into energy(E), semantic(S), and std.(D) (Table 3,
row 2), which are then processed in quantization(S) or con-
tinuum(E&D), enhancing performance (Table 3, row 3&4)
by balancing completeness and complexity.

7.2. Explanation of Mel-QCD
Figure 6 depicts 2D t-SNE visualization of S, derived from
an audio features two sound events (gun shooting, shoot
spreading, as shown in Figure 3). It shows S effectively
distinguishes between sound events, and determines inter-
event semantic differences.

8. Experimental Details
8.1. ControlNet
Our diffusion model is built upon the architecture of Auf-
fusion [50], which fine-tunes the text-to-image generation
model Stable-Diffusion-v1.5 [40] using text-audio pairs. By
leveraging its pre-trained weights from the text-to-audio
generation task, we incorporate the VAE encoder and UNet
encoder to construct our ControlNet.

During the forward process of the model, a control map
CS ∈ RK×(T×fmel) is first repeated three times to accom-
modate the channel dimension of the images. This map is
then downsampled to (K8 × (T×fmel)

8 ) using the VAE en-
coder.

Next, following [52], we pass the downsampled output
through several trainable convolutional blocks, concluding
with a layer that is initialized to zero. The processed output
is then fed into the copied UNet encoder. At the end of each
downsampling block, we retain the intermediate features
and combine them with the skip features extracted from the
main denoising UNet.

We freeze the parameters of the base model and intro-
duced VAE encoder within ControlNet, and only train the
copied UNet encoder.

Clear Boundary

Figure 6. The t-SNE visualization for S.

8.2. Textual Inversion

For textual inversion, we employ the CLIP visual encoder to
convert video frames V ∈ R(T×fv)×3×H×W into features
with shape of (T × fv)× 768, which are then processed by
the Inversion Adaptor made up of one transformer layer and
two MLP layers into 32 tokens.

8.3. V2X Predictor

We begin by using Synchformer to convert video frames
V ∈ R(T×fv)×3×H×W into an embedding sequence with
a shape of ((T × fv) × 1024). This is followed by a two-
layer MLP projector and four basic transformer blocks to
generate the target signal embeddings.

Next, we employ three different signal prediction heads
to transform embeddings into the corresponding signals.
Notably, to account for scale invariance among the different
losses, we optimize the three V2X predictors independently.

8.4. Training Details

During training, we first train the UNet encoder included
within ControlNet on eight NVIDIA A100 GPUs with 80
Gb VRAM each for two days. With well trained Control-
Net, we freeze it and introduce textual inversion related
modules, which are trained for one day. In above train-
ing, we utilize an optimizer of AdamW with a learning rate
of 1e-5, a batch size of 20 on each A100 card. For train-
ing the V2X predictors, we run each on eight NVIDIA L20
GPUs, each equipped with 48 GB of VRAM, for a duration
of one day. To train this, we optimize it with an optimizer
of AdamW with a learning rate of 3e-5, a batch size of 32
on each L20 card.

8.5. Inference Details

Following Auffusion [50], we utilize a diffusion sampler
of PLMS [31] with a sampling step of 100 and incorporate
the diffusion process with a classifier-free-guidance with a
guidance scale of 7.5 during inference.
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9. Dataset Related Explanations
9.1. Data Filtering
Since the official version of VGGSound consists of
YouTube links, some of which have become inactive or have
been replaced with new videos, we implemented a three-
round data filtering process to ensure that only valid videos
are included in our training set.

In the first round, we downloaded 199,176 videos and
aimed to filter out links that have been replaced with new
content. We used ImageBind to extract video, audio, and
VGGSound embeddings based on textual class names. We
sorted the scores for these three types of embeddings and
discarded video indexes where all scores fell within the
lower 20% range. As a result, we retained approximately
180,000 videos.

Next, we conducted a more fine-grained filtering pro-
cess to eliminate videos with inconsistent visual, acous-
tic, and textual descriptions. We employed Aurora-Cap [5]
and Qwen-Audio [8] to generate captions for the video
and audio respectively. Using the original textual captions
along with the generated ones, we utilized a Large Lan-
guage Model (LLM), Llama-3 70b [12], to verify whether
the three types of captions described the same sound effect.
This process reduced our dataset to around 80,000 videos.

In the following step, we again used the same LLM,
prompted with the three textual descriptions, to identify and
remove videos featuring human talking. This step left us
with approximately 56,000 videos, which became the final
version of our dataset.

However, we noticed that some videos within this 56,000
set included sounds that did not correlate well with the vi-
sual content, making it challenging to infer sound effects
from visual features. To mitigate this issue and improve
the training of our V2X predictors, we conducted a man-
ual filter on the 56,000 videos, selecting those with strong
audio-video correlations. Ultimately, we narrowed down
the dataset to about 22,000 videos, which were used to train
the V2X predictors.

9.2. Data Split
To ensure a fair comparison with prior models trained on the
officially split VGGSound training set, we must also isolate
a test set. To achieve this, we select from the 56,000 videos
intended for the official VGGSound test set to create our
own test set, which will comprise 1,100 high-quality videos.

10. User Study
In this section, we describe a user study conducted with a
selection of 100 videos from our test set. To facilitate com-
parisons with other methods, we present volunteers with a
seed video along with the generated audio outputs from var-
ious algorithms, asking them to rank these audio samples.

Table 8. Average User Rankings Across Three Evaluation Di-
mensions. For the ranking index, a lower value indicates better
performance in the evaluation metrics.

Method Overall Score Quality Synchronization Semantic
Im2Wav 4.64 3.92 4.82 5.18
DiffFoley 4.99 5.66 3.67 5.63

VTA-LDM 2.39 2.22 2.00 2.95
Seeing-and-Hearing 5.09 5.83 5.71 3.73

FoleyCrafter 3.81 3.01 3.59 4.82
Ours 1.48 1.13 1.82 1.50

And we report the Average User Ranking (AUR) in Table 8.
The user study evaluates the generated content across

three key dimensions: generation quality, temporal syn-
chronization, and semantic consistency. To guide the par-
ticipants in their assessments, we provide the following
prompts:

• Generation Quality: Rank the following audio samples
based on their quality in representing the sound event.

• Temporal Synchronization: Rank the following videos
according to how well the audio aligns with the video
content in terms of synchronization with the sound event.

• Semantic Consistency: Rank the following videos based
on how well the audio aligns semantically with the video
content and the sound event [sound event].

The results are presented in Table 8. As indicated in
the table, our proposed method outperforms the other ap-
proaches across all three evaluation dimensions. Addition-
ally, it is noteworthy that VTA-LDM consistently achieves
the second-best performance across all metrics.

In the quality dimension, our method ranks highest with
a score of 1.13, reaffirming its superiority in audio qual-
ity representation. VTA-LDM secures second place with a
score of 2.22, demonstrating commendable quality, though
not as high as “Ours.” Seeing-and-Hearing ranks lowest in
this dimension, with a score of 5.83, highlighting a signifi-
cant gap from the top performers.

Regarding the synchronization metric, our method again
takes first place with a score of 1.82, maintaining a strong
performance in synchronizing audio with video content.
VTA-LDM continues to show solid performance with a
score of 2.00, solidifying its position as a competitive al-
ternative. Im2Wav scores 4.82, indicating moderate perfor-
mance, while DiffFoley scores lower at 3.67. Seeing-and-
Hearing scores 5.71, aligning with its overall ranking and
indicating synchronization issues.

In terms of semantic consistency, our method achieves a
score of 1.50, reflecting effective semantic alignment with
video content. VTA-LDM scores 2.95, demonstrating a
good semantic connection, albeit not as robust as “Ours.”
Im2Wav and Seeing-and-Hearing fall behind with scores of
5.18 and 3.73, respectively, suggesting lower effectiveness
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in maintaining semantic coherence. FoleyCrafter scores
4.82, indicating it also struggles with semantic alignment
compared to the top methods.

11. Case Study
In this section, we present visualized mel spectrograms gen-
erated by various methods in Figure 7. Please refer to the
attached file for the generated videos.

12. Generated Cases
To enhance the reader’s experience in listening to the gen-
erated audio, we have included the videos along with their
corresponding generated audio in a PowerPoint presenta-
tion. Please refer to the attached file for access.

13. Limitations
We recognize that our experimental evaluation is con-
strained by computational limitations and the difficulty of
acquiring large datasets. Future work will aim to advance
industrial-level model training to improve the applicability
and scalability of our approach.
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Figure 7. Case study for comparison on VGGSound test-set.
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